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Introduction

n recent years, a significant proliferation in the development and commercialisation of small Unmanned
Aircraft Systems (sUAS), commonly referred to as “drones”, has drastically changed the everyday use of
civil airspace. Drones have captured the imagination of many entrepreneurs because they can offer a
wide range of possibilities, i.e. commercial services, security, and environmental applications, in which

classic manned aviation struggles.



The rapid progress in technological developments of drones
has reduced their development, production, and operations
costs. The democratisation of such technology offers various
services to businesses and citizens while placing new
demands on using the already congested civil airspace.

This rapid technological pace and the use of drones

by civilians have left little time to develop appropriate
regulatory frameworks concerning their safe and fair usage.
Consequently, the absence of regulations may lead to misuse
of this technology, negatively impacting its image, primarily
due to noise emissions. Although they are not very loud, the
frequency-shifting buzzing noise from drones is perceived as
annoying by most people. Especially in take-off conditions,
the propellers need to increment their rotation speed
changing the overall acoustic signature in amplitude and
tonal frequencies.

Challenge

Modern numerical techniques may help reduce noise from
drones. The insights provided by the numerical simulation
can guide engineers and scientists in discovering new
strategies leading to quieter drone systems. A challenge for
simulation in predicting drone noise is knowing the values of
various flight parameters, such as the rotation speed of each
rotor, crosswind, and pitch angle of the propeller blades.
These parameters may vary in real-world situations, or their
values are unknown. Different flight scenarios are described
mainly by various propeller rotation speeds. In many cases,
propeller speeds differ between the different propellers so
that the drone can move forward, backwards, sideways, or
rotate on its axis.
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Such a situation renders the arduous task of addressing
drone (or, in general, multi-propeller aircraft) noise using

a deterministic approach, given the cost of the state-of-
the-art computational techniques. This is especially true
for low-cost drones in which the market revenue, the short
product life cycle, and economic components do not justify
such an investment.

Current computational techniques include high-fidelity
computational fluid dynamics (CFD) techniques coupled

with solutions of Ffowcs Williams-Hawkings’ (FW-H) analogy
and hybrid methods, including decoupled CFD and acoustics
methods. Due to the high cost of CFD simulations, performing
the required number of simulations to cover all possible
situations is impossible.

Combined with clever computational aeroacoustic simulation
techniques, Machine Learning (ML) could instantly provide
game-changing predictions, covering all the different
scenarios. With ML, we can predict the noise signature of

a drone under conditions that are not evaluated by the
computational aeroacoustic model.

A final challenge, especially for low-cost drones, is that
they are equipped with brushless DC motors with no
feedback control to determine the rotation speed. For this
reason, the rotation speed is established by the supplied
power and then measured using an optical tachometer.
This creates a disconnect between measurements and
simulation since simulation requires a fixed value. At the
same time, analysis of the measured spectra showed a
discrepancy between the measured rotation speed and
the actual one.
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Figure 1: Drone configuration used in measurements and calculations: (a) Dimensions and directions of rotation; (b) Relative position of the

microphones (not to scale).
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Figure 2: (a) Detail of the CFD mesh, (b) Instantaneous norm of the velocity and Q-criterion.
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Figure 3: Instantaneous lift using the full CFD model (black line) and the quarter model (red line): (a) Time evolution between the 30th and 32nd
rotation of the propellers; (b) Spectra for the instantaneous lifts.
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Figure 4: Pressure maps in dBA for 610.1 Hz (BPF) and 5,000 Hz. The four propellers rotate at 18,303 rpm.

Aeroacoustic modelling for drones.

Learn more about aeroacoustics: hexagon.com



https://hexagon.com/solutions/acoustic-simulation

Simulating the drone and optimising large simulations

The drone considered for this case is a small, low-cost
quadcopter drone. Hosei University’s Urban Air Mobility lab

in Japan performed measurements of the drone’s noise
signature. Usually, low-cost drones are equipped with
brushless DC motors with no feedback control to determine
the rotation speed. For this reason, the rotation speed is
established by the supplied power and then measured using
an optical tachometer. Three different power supplies were
considered, leading to the following measured speeds: 15,379
rpm, 17,140 rpm and 18,303 rpm.

The computational process is split into a Cradle CFD simulation
using scFLOW and an aeroacoustic simulation using Actran.

For the Cradle CFD simulation, two configurations were built,
one with the full 3D model with four propellers and a quarter
model with one propeller and two symmetry conditions, which
will be faster to solve and allows for easier post-processing
later. Four rotating domains were placed in connection with
the static domains for modelling the propellers by using
sliding meshes.

An LES simulation is performed, costing about 7,550 CPU-
hours for the full model and 3,160 CPU-hours for the more

refined quarter model, respecting all stability and signal-
processing criteria. The simulations were run for 87 rotations

at the reference speed of 18,303 rpm, discarding the first

eight rotations to only consider the statistically converged
signal. The flow information (i.e. velocity, pressure, and density)
was exported at each time step for use in the computation

of aeroacoustic sources. The two configurations produce
remarkably similar lift characteristics so that the quarter model
can be used for the next step, the aeroacoustic simulation.

Upon completion of the Cradle CFD solution, Actran is used to
calculate the aerodynamic sources and noise propagation. In
the acoustic model for the complete drone, the aerodynamic
sources from each propeller are placed onto their respective
Lighthill surface. The modelis valid up to a computational
frequency of 5 kHz. The acoustic analysis of 492 frequencies
solves in 185 CPU-hours. Since the time signal of the flow
variables is sufficiently long, it is worth noticing that this is
divided into sub-signals to generate seven sub-load cases per
rotation speed deviation.

With this process established, the challenge now is to

cover many possible scenarios regarding propeller rotation.
Simulating them one by one would be costly. So, a more
intelligent strategy is required, which will utilise the load case
capabilities of Actran.
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Figure 5: ML strategy in a combination of CAA and CFD simulation.
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Figure 6: An application to generate noise results in real-time based on ML techniques.

Due to symmetry, Cradle CFD calculations are performed on a
reduced quarter model by varying the rotation speed from-40%
to 0% deviation from the selected reference rotation speed
(18,303 rpm). The resultant flow information for each rotation
speed (i.e. velocity, pressure and density) is exported for the
computation of aeroacoustic sources. Then, the aeroacoustic
sources are translated into the frequency domain and used in
the Computational Aero Acoustics (CAA) solver to estimate the
sound pressure level up to 5 kHz using 492 discrete frequency
values. Given the nine rotation speed deviations computed for
the four propellers and seven sub-load cases, the CAA solver’s
total load cases rose to 882 data samples.

Machine Learning to the rescue

Employing supervised ML techniques (decision trees and
support vector machines) generates the noise spectrum
based on the rotation speed inputs and trained on the
combined simulation data. Because the data in the ML
procedure originates from computational physics algorithms,
the selection of ML features is already determined. They
correspond to the deviations of rotation speed for each
propeller. The modelling techniques were cross-validated,
and hyper-parameter tuning identified the best approach
with the minimum error at prediction. In the end, for the best
model, a gradient-boosted tree, the maximum absolute error
estimated is around 1.19 dBA, relatively low for acoustics
comparison standards.

The models were imported into a graphical application enabling

the engineers to get the noise spectrum in real-time depending
on the rotation speed variation from the nominal (18,303 rpm).
Engineers can view the spectrum for each microphone and play
the measured sound for each microphone.

What comes next

This application is only an example or prototype of the
potential of ML for drone noise and other applications. The
future could include a fully functional, internet-connected
web application where engineers could generate sound from
the acoustic predictions and acoustic maps to visualise the
noise propagation in real time.

In this case, the goal was to compare against measurements
performed on a static rig. In the future, the model could be
improved for real-world situations by adding other effects
such as the pitch variation of the blades, complex propagation
in model cities and neighbourhoods, wind speed and direction
and many more effects.

The described methodology extends and applies to other
multi-propeller aircraft configurations, such as passenger
drones and fixed-wing aircraft with distributed propulsion.

By combining high-fidelity simulation data from world-class
tools such as Cradle CFD and Actran with ML, drone design
and certification for noise can become faster and more
streamlined, and the new generation of drones can be safer
and quieter.



