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Introduction

In recent years, a significant proliferation in the development and commercialisation of small Unmanned 
Aircraft Systems (sUAS), commonly referred to as “drones”, has drastically changed the everyday use of 
civil airspace. Drones have captured the imagination of many entrepreneurs because they can offer a 
wide range of possibilities, i.e. commercial services, security, and environmental applications, in which 
classic manned aviation struggles. 



The rapid progress in technological developments of drones 
has reduced their development, production, and operations 
costs. The democratisation of such technology offers various 
services to businesses and citizens while placing new 
demands on using the already congested civil airspace.

This rapid technological pace and the use of drones 
by civilians have left little time to develop appropriate 
regulatory frameworks concerning their safe and fair usage. 
Consequently, the absence of regulations may lead to misuse 
of this technology, negatively impacting its image, primarily 
due to noise emissions. Although they are not very loud, the 
frequency-shifting buzzing noise from drones is perceived as 
annoying by most people. Especially in take-off conditions, 
the propellers need to increment their rotation speed 
changing the overall acoustic signature in amplitude and 
tonal frequencies.

Challenge

Modern numerical techniques may help reduce noise from 
drones. The insights provided by the numerical simulation 
can guide engineers and scientists in discovering new 
strategies leading to quieter drone systems. A challenge for 
simulation in predicting drone noise is knowing the values of 
various flight parameters, such as the rotation speed of each 
rotor, crosswind, and pitch angle of the propeller blades. 
These parameters may vary in real-world situations, or their 
values are unknown. Different flight scenarios are described 
mainly by various propeller rotation speeds. In many cases, 
propeller speeds differ between the different propellers so 
that the drone can move forward, backwards, sideways, or 
rotate on its axis.

Such a situation renders the arduous task of addressing 
drone (or, in general, multi-propeller aircraft) noise using 
a deterministic approach, given the cost of the state-of-
the-art computational techniques. This is especially true 
for low-cost drones in which the market revenue, the short 
product life cycle, and economic components do not justify 
such an investment.

Current computational techniques include high-fidelity 
computational fluid dynamics (CFD) techniques coupled 
with solutions of Ffowcs Williams-Hawkings’ (FW-H) analogy 
and hybrid methods, including decoupled CFD and acoustics 
methods. Due to the high cost of CFD simulations, performing 
the required number of simulations to cover all possible 
situations is impossible. 

Combined with clever computational aeroacoustic simulation 
techniques, Machine Learning (ML) could instantly provide 
game-changing predictions, covering all the different 
scenarios. With ML, we can predict the noise signature of 
a drone under conditions that are not evaluated by the 
computational aeroacoustic model.

A final challenge, especially for low-cost drones, is that 
they are equipped with brushless DC motors with no 
feedback control to determine the rotation speed. For this 
reason, the rotation speed is established by the supplied 
power and then measured using an optical tachometer. 
This creates a disconnect between measurements and 
simulation since simulation requires a fixed value. At the 
same time, analysis of the measured spectra showed a 
discrepancy between the measured rotation speed and 
the actual one.

Figure 1: Drone configuration used in measurements and calculations: (a) Dimensions and directions of rotation; (b) Relative position of the 
microphones (not to scale).



Figure 2: (a) Detail of the CFD mesh, (b) Instantaneous norm of the velocity and Q-criterion.

Figure 3: Instantaneous lift using the full CFD model (black line) and the quarter model (red line): (a) Time evolution between the 30th and 32nd 
rotation of the propellers; (b) Spectra for the instantaneous lifts.

Figure 4: Pressure maps in dBA for 610.1 Hz (BPF) and 5,000 Hz. The four propellers rotate at 18,303 rpm.
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Simulating the drone and optimising large simulations

The drone considered for this case is a small, low-cost 
quadcopter drone. Hosei University’s Urban Air Mobility lab 
in Japan performed measurements of the drone’s noise 
signature. Usually, low-cost drones are equipped with 
brushless DC motors with no feedback control to determine 
the rotation speed. For this reason, the rotation speed is 
established by the supplied power and then measured using 
an optical tachometer. Three different power supplies were 
considered, leading to the following measured speeds: 15,379 
rpm, 17,140 rpm and 18,303 rpm.

The computational process is split into a Cradle CFD simulation 
using scFLOW and an aeroacoustic simulation using Actran. 

For the Cradle CFD simulation, two configurations were built, 
one with the full 3D model with four propellers and a quarter 
model with one propeller and two symmetry conditions, which 
will be faster to solve and allows for easier post-processing 
later. Four rotating domains were placed in connection with 
the static domains for modelling the propellers by using 
sliding meshes.

An LES simulation is performed, costing about 7,550 CPU-
hours for the full model and 3,160 CPU-hours for the more 

refined quarter model, respecting all stability and signal-
processing criteria. The simulations were run for 87 rotations 
at the reference speed of 18,303 rpm, discarding the first 
eight rotations to only consider the statistically converged 
signal. The flow information (i.e. velocity, pressure, and density) 
was exported at each time step for use in the computation 
of aeroacoustic sources. The two configurations produce 
remarkably similar lift characteristics so that the quarter model 
can be used for the next step, the aeroacoustic simulation.

Upon completion of the Cradle CFD solution, Actran is used to 
calculate the aerodynamic sources and noise propagation. In 
the acoustic model for the complete drone, the aerodynamic 
sources from each propeller are placed onto their respective 
Lighthill surface. The model is valid up to a computational 
frequency of 5 kHz. The acoustic analysis of 492 frequencies 
solves in 185 CPU-hours. Since the time signal of the flow 
variables is sufficiently long, it is worth noticing that this is 
divided into sub-signals to generate seven sub-load cases per 
rotation speed deviation.

With this process established, the challenge now is to 
cover many possible scenarios regarding propeller rotation. 
Simulating them one by one would be costly. So, a more 
intelligent strategy is required, which will utilise the load case 
capabilities of Actran.

Figure 5: ML strategy in a combination of CAA and CFD simulation.



Figure 6: An application to generate noise results in real-time based on ML techniques.

Due to symmetry, Cradle CFD calculations are performed on a 
reduced quarter model by varying the rotation speed from -40% 
to 0% deviation from the selected reference rotation speed 
(18,303 rpm). The resultant flow information for each rotation 
speed (i.e. velocity, pressure and density) is exported for the 
computation of aeroacoustic sources. Then, the aeroacoustic 
sources are translated into the frequency domain and used in 
the Computational Aero Acoustics (CAA) solver to estimate the 
sound pressure level up to 5 kHz using 492 discrete frequency 
values. Given the nine rotation speed deviations computed for 
the four propellers and seven sub-load cases, the CAA solver’s 
total load cases rose to 882 data samples.

Machine Learning to the rescue

Employing supervised ML techniques (decision trees and 
support vector machines) generates the noise spectrum 
based on the rotation speed inputs and trained on the 
combined simulation data. Because the data in the ML 
procedure originates from computational physics algorithms, 
the selection of ML features is already determined. They 
correspond to the deviations of rotation speed for each 
propeller. The modelling techniques were cross-validated, 
and hyper-parameter tuning identified the best approach 
with the minimum error at prediction. In the end, for the best 
model, a gradient-boosted tree, the maximum absolute error 
estimated is around 1.19 dBA, relatively low for acoustics 
comparison standards.

The models were imported into a graphical application enabling 

the engineers to get the noise spectrum in real-time depending 
on the rotation speed variation from the nominal (18,303 rpm). 
Engineers can view the spectrum for each microphone and play 
the measured sound for each microphone.

What comes next

This application is only an example or prototype of the 
potential of ML for drone noise and other applications. The 
future could include a fully functional, internet-connected 
web application where engineers could generate sound from 
the acoustic predictions and acoustic maps to visualise the 
noise propagation in real time. 

In this case, the goal was to compare against measurements 
performed on a static rig. In the future, the model could be 
improved for real-world situations by adding other effects 
such as the pitch variation of the blades, complex propagation 
in model cities and neighbourhoods, wind speed and direction 
and many more effects.

The described methodology extends and applies to other 
multi-propeller aircraft configurations, such as passenger 
drones and fixed-wing aircraft with distributed propulsion. 

By combining high-fidelity simulation data from world-class 
tools such as Cradle CFD and Actran with ML, drone design 
and certification for noise can become faster and more 
streamlined, and the new generation of drones can be safer 
and quieter.


