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Abstract 

In recent years, a significant proliferation in the development and commercialization of small Unmanned Aircraft Systems 

(sUAS) usually known as “drones” has drastically changed the common use of civil airspace. Indeed, drones have captured 

the imagination of many entrepreneurs because they can offer a wide range of possibilities, i.e. commercial services, 

security and environmental applications, in which classic manned aviation struggles. Furthermore, the rapid technological 

pace and the use of drones by civilians has left little time for the development of appropriate regulatory frameworks 

concerning their safe and fair use. Consequently, the absence of regulations may lead to misuse of this technology 

negatively impacting its image, especially due to the noise emissions. Although they are not very loud, the frequency-

shifting buzzing noise from drones is perceived as annoying by most people. Especially as the payload increases, in take-

off conditions, the propellers need to increment their rotation speed changing the overall acoustic signature in terms of 

amplitude and tonal frequencies. In this study, a hybrid computational aeroacoustics approach to predict noise from drones 

at different payload conditions is presented. The method to assess this acoustic signature relies on a prior computation of 

the flow field by means of a CFD analysis, then aeroacoustics sources based on Lighthill’s acoustic analogy are used to 

solve the wave propagation problem in combination with machine learning techniques for generation of solutions in real-

time. The transient CFD computations are calculated using a time-marching LES simulation with a WALE sub-grid scale 

in a finite volume numerical context. In contrast, the acoustic propagation is predicted using a FEM in the frequency 

domain. The test case consists of an in-plane, 2-blade quadcopter at three different rotation speeds or payload conditions. 

The sound levels are estimated at different directivity angles in a broadband spectrum. Finally, the numerical method is 

validated against experimental data available for comparisons. 

 

1. Introduction 

The rapid progress in technological developments of small Unmanned Aircraft Systems (sUAS) or simply “drones” have 

drastically reduced their costs of development, production, and operations. The democratization of such a technology is 

offering a large variety of services to businesses and citizens while placing new demands on the use of the already-

congested civil airspace [1,2]. Furthermore, to allow a safe growth of the drone-derived economy, important efforts are 

underway around the world to establish a coherent regulatory framework for the use of drones [3,4]. Indeed, one of the 

important aspects of drone operations is noise. For instance, depending on the present ambient noise (e.g. road traffic) the 

noise generated by drones may lead to high perceived loudness and annoyance [5]. 

Modern numerical techniques may help reduce noise from drones. Certainly, the insights provided by the numerical 

simulation guide engineers and scientists in the discovery of new strategies leading to quieter drone systems. A typical 

approach relies on high-fidelity computational fluid dynamics (CFD) techniques coupled with solutions of Ffowcs 

Williams-Hawkings’ (FW-H) analogy [6] for permeable or solid boundaries [7]. This deterministic approach usually 

requires an apriori knowledge of the parameter’s values at initial conditions, i.e. rotation speed of each rotor, crosswind, 

pitch angle of the blades’ propeller, etc. Remarkable demonstrations can be found in the literature for drone noise 

predictions [8] or general multi-propeller aircraft noise calculations [9] requiring 8 × 105 and 2.5 × 105 CPU-hours 
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respectively. In real-world situations, initial conditions may vary over a range or its value is simply unknown. Such a 

situation renders arduous the task of addressing drone (or in general multi-propeller aircraft) noise using a deterministic 

approach given the cost of the state-of-the-art computational techniques. This is especially the case for low-cost drones 

in which the market revenue, the ephemeral product life cycle, and economical components, do not simply justify such 

an investment.  

The present work addresses the noise prediction of drones from a statistical perspective. The statistical approach used 

relies on a combination of CFD, CAA (Computational Aeroacoustics) and machine learning techniques to deal with 

uncertainties or variations of payload conditions. Indeed, the different payloads are handled by the drone’s lift, strongly 

depending on the rotation speed of the propellers. Besides the expected increase of overall noise for higher rotational 

speeds, the acoustic signature can also change, shifting the tonal and broadband noise components towards high (or low) 

frequencies. This represents an additional constraint to the present methodology.  

This study starts with quantitative and qualitative analyses of the experimental data (section 2) revealing uncertainties at 

the initial conditions. Then, a machine learning strategy is presented in section 3, followed by the description of CFD 

(section 4.2) and CAA (section 4.3) methodologies. With the data produced by the CFD/CAA processes, a hyper-

parameter analysis is performed to determine the best machine learning model (section 5). The best predictor model is 

presented in the context of fulfilling two goals: real-time noise prediction of drone systems and determination of rotation 

speed(s) leading to a noise prediction matching experimental data. Finally, the results are discussed and analysed (section 

6) followed by concluding remarks and possible further investigations (section 7). 

 

2. Experimental Data and Data Analysis 

The drone used for the measurements is a low-cost (~70$ - Jan 2021) quadcopter/double propeller LHI-QAV250 model, 

very popular among drone enthusiasts. Such a model can be found online as a builder kit. The dimensions of the drone 

model are depicted in Figure 1a. In the measurements, the drone was attached to a fixed platform at 1.97 m from the floor 

and 8 measurement points were defined at iso-radius (R = 0.6 m) from the drone’s centre of gravity. The measurements 

were performed on the semi-anechoic chamber facilities at Hosei University Urban Air Mobility Laboratory using a RION 

NL-31 sound level meter [10]. 

 
Figure 1: Drone configuration used in measurements and calculations. (a) Dimensions and directions of rotation; (b) 

Relative position of the microphones (sub-figure not in scale). 

Usually, low-cost drones are equipped with brushless DC motors with no feedback control to determine the rotation speed. 

For this reason, the rotation speed is established by the supplied power and then measured using an optical tachometer. 

Three different power supplies are considered leading to the following measured speeds in RPM (Revolution Per Minute), 

i.e. 15379, 17140 and 18303. For better referencing, the propellers were tagged as (Figure 1b): upper-right (UR - red), 

upper-left (UL - green), lower-left (LL - blue), and lower-right (LR - yellow). The direction of rotation for each propeller 

is indicated as well in Figure 1a. Finally, the sound measured was obtained in two different formats, namely spectrum in 

dBA and as a sound file (*.wav).  
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Prior to the CFD and CAA calculations, the sound files and the experimental data are analyzed to detect possible 

anomalies. For instance, for points 1 and 5, an audio inspection revealed a significant blow sound, probably induced by 

the drone’s flow stream at the discharge (point 1) and suction (point 5) sides. This can be observed in the spectrum for 

point 1 (Figure 2a) and its spectrogram (Figure 2b). Indeed, in contrast to point 1, in point 7 (far from the flow stream), 

the spectrum (Figure 3a) and spectrogram (Figure 3b) contain well-defined peaks at the rotation speed and harmonics. 

For practical purposes, such measurement points will be not considered in the numerical comparisons. 

 
Figure 2: Sound analysis of the *.wav file for point 1 at 18303 RPM measured. (a) Spectrum. (b) Spectrogram. 

Additionally, a closer observation at the spectrum peaks for point 7 (Figure 3a) reveals further irregularities. For instance, 

the first two peaks in the spectrum and spectrogram (230 Hz and 456 Hz) may correspond to the propeller’s rotation speed 

and its first blade passing frequency (BPF) for a rotation speed around ~13800 RPM. Yet, for a rotation speed of 18303 

RPM (measured), such peaks should be located at ~305 Hz and ~610 Hz.  

 
Figure 3: Same as Figure 2 but for point 7. 

Besides, another interesting phenomenon is detected by analyzing the relative peak positions in the spectrum. The 

different peaks start to separate from each other as the frequency increases. For instance, the frequency width of the 6th 

peak is around 59 Hz (1407 Hz − 1348 Hz). This may be interpreted as a difference of around ~10 Hz at the 1st harmonic 

or a ~600 RPM difference between at least two propellers. Such irregularities may be explained by errors in the 

measurements of the optical tachometer and the difficult control of the rotation speed in low-cost drones. Consequently, 

due to the uncertainty of rotation speed values measured by the optical tachometer and the relative difference between the 

rotation speeds of any pair of propellers, a deterministic CFD and CAA calculation is unfeasible. Therefore, a statistical 

approach for noise prediction of drones using supervised machine learning techniques is proposed. 
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3. Machine Learning Strategy  

In this section, a machine learning strategy is proposed using acoustics data obtained from CAA and CFD methods. Such 

a strategy is intended to determine in real-time the noise at different locations produced by the drone given the variation 

of rotation speed for each propeller. 

 
Figure 4: Machine learning strategy in a combination of CAA and CFD simulations. 

The general strategy is depicted in Figure 4:. First, CFD calculations using a reduced quarter model are performed by 

varying the rotation speed from -40% to 0% of deviation from the reference rotation speed selected (18303 RPM). The 

justifications for using a quarter model in the CFD calculation instead of a full model are described in sections 4.2 and 

4.3. The flow information for each rotation speed (i.e. velocity, pressure and density) is exported to be used in the 

computation of aeroacoustic sources. Then, the aeroacoustic sources are translated into frequency domain and used in the 

CAA solver to estimate the sound pressure level up to 5 kHz using 492 discrete frequency values. It is worth noticing 

that, since the time signal of the flow variables is sufficiently long, this is divided in sub-signals to generate 7 sub-load-

cases per rotation speed deviation. Furthermore, given the 9 rotation speed deviations computed for the 4 propellers and 

7 sub-load cases, the total amount of realisations carried by the CAA solver raises up to 8821 data samples. Because the 

data to be used in the machine learning procedure originates from computational physics algorithms, the selection of 

machine learning features is already determined. Indeed, the features correspond to the deviations of rotation speed for 

each propeller. 

The 882 data samples from the 8 virtual microphones at 492 discrete frequencies are then divided in two groups, i.e. test 

and training sets. Such information is first used in the hyperparameter tunning (section 5) for each regressor model 

selected. For the hyperparameter tuning, a random search is performed to determine the best optimal parameters given an 

error metric. Finally, two goals to achieved are defined using the best regressor model: (i) a graphical recombination tool 

is developed to estimate in real-time the noise at each virtual microphone for a user-defined set of rotation speeds; (ii) the 

combination of rotation speed for each propeller is estimated to minimize the error of the predicted spectrum with respect 

to the experimental data available.  

 
1 The total number of load-cases were computed as 7 × C(9,4) = 882 where C is the combinatorial operator. 
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4. Computational Aeroacoustics and Fluid Dynamics Procedures 

4.1 Theoretical background 

Lighthill’s rearrangement of fluid dynamics equations into the form of acoustic analogy is written as follows [11,12]:  

 𝜕2𝜌

𝜕𝑡2
− 𝑐0

2𝛁2𝜌 = 𝛁 ⋅ 𝛁 𝐓𝑖𝑗 , 
(1) 

the left-hand side (l.h.s) of equation (1) represents a wave equation for the density 𝜌 while the right-hand side (r.h.s.) 

contains an equivalent source term where 𝐓𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗 + δ𝑖𝑗(𝑝 − 𝑐0
2𝜌) − 𝜏𝑖𝑗  is commonly referred as Lighthill’s tensor. 

Furthermore, 𝑢𝑖, 𝑝, 𝑐0 and 𝜏𝑖𝑗  are the fluid velocity, pressure, speed of sound and viscous tensor respectively, while δ𝑖𝑗  is 

the Kronecker delta. Assuming constant speed of sound 𝑐0, a variational formulation [13] is derived by multiplying 

equation (1) by a test function 𝜌∗ and integrating over a region Ω as follows:  

 
∫

𝜕2𝜌

𝜕𝑡2 𝜌∗𝑑Ω
Ω

− 𝑐0
2 ∫ 𝛁2𝜌𝜌∗𝑑Ω

Ω

=  ∫ 𝛁 ⋅ 𝛁 ⋅ 𝐓𝑖𝑗𝜌∗𝑑Ω
Ω

. 
(2) 

With 𝛁 ⋅ (𝑓𝒈) = 𝑓 𝛁 ⋅ 𝒈 +  𝒈 ⋅ 𝛁𝑓, the spatial derivative can be transferred to the test function 𝜌∗ leading to:  

 
∫

𝜕2𝜌

𝜕𝑡2 𝜌∗𝑑Ω
Ω

+ 𝑐0
2 ∫ 𝛁𝜌∗ ⋅ 𝛁𝜌 𝑑Ω

Ω

− 𝑐0
2 ∫ 𝛁 ⋅ (𝜌∗𝛁𝜌)𝑑Ω

Ω

 = − ∫  𝛁 ⋅ 𝐓𝑖𝑗 ⋅ 𝛁𝜌∗ 𝑑Ω
Ω

 + ∫ 𝛁 ⋅ (𝜌∗𝛁 ⋅ 𝐓𝑖𝑗)𝑑Ω
Ω

. 
(3) 

Using Gauss’s theorem, i.e. ∫ 𝛁 ⋅ 𝒈 𝑑Ω
Ω

= ∮ 𝒈 ⋅ 𝐧 𝑑Γ 
Γ

, the last terms at both sides of equation (3) are re-written as surface 

integrals and regrouped, therefore:  

 
∫

𝜕2𝜌

𝜕𝑡2 𝜌∗𝑑Ω
Ω

+ 𝑐0
2 ∫ 𝛁𝜌∗ ⋅ 𝛁𝜌 𝑑Ω

Ω

 = − ∫  𝛁 ⋅ 𝐓𝑖𝑗 ⋅ 𝛁𝜌∗ 𝑑Ω
Ω

 + ∮𝜌∗(𝛁 ⋅ 𝐓𝑖𝑗 + 𝑐0
2𝛁𝜌) ⋅ 𝐧 𝑑Γ,

Γ

 
(4) 

part of integrant in the surface integral of equation (4), i.e. 𝛁 ⋅ 𝐓𝑖𝑗 + 𝑐0
2𝛁𝜌 may be expressed as 𝛁 ⋅ (𝜌𝑢𝑖𝑢𝑖 + δ𝑖𝑗𝑝 − 𝜏𝑖𝑗) =

− ∂(𝜌𝑢i)/ ∂t corresponding to the time derivate of the momentum 𝜌𝑢𝑖. Therefore, equation (4) is finally expressed as: 

 
∫

𝜕2𝜌

𝜕𝑡2 𝜌∗𝑑Ω
Ω

+ 𝑐0
2 ∫ 𝛁𝜌∗ ⋅  𝛁𝜌 𝑑Ω

Ω

 = − ∫  𝛁 ⋅ 𝐓𝑖𝑗 ⋅ 𝛁𝜌∗ 𝑑Ω
Ω

 − ∮ 𝜌∗  (
𝜕𝜌𝒖

𝜕𝑡
) ⋅ 𝐧 𝑑Γ.

Γ

 
(5) 

The variational formulation of Lighthill’s analogy contains two terms, a volume term referred as Lighthill Volume and a 

surface term or Lighthill Surface. This variational formulation is useful in the context of finite element method (FEM) 

and CAA. For instance, the volume integral only requires first spatial derivatives from the flow solution, convenient for 

standard low spatial order CFD techniques. Besides, the surface integral only requires first-order time derivatives of the 

flow information, straightforward in the frequency domain. Furthermore, such a surface integral vanishes: (i) at the solid 

walls (𝒖. 𝐧 =  0) coinciding with the natural rigid wall conditions for acoustics in FEM or non-slip wall condition in CFD; 

and (ii) in the far field where sources from turbulence are inexistent. Besides, this surface integral is useful for modelling 

the presence of rotating bodies or in the case of truncated domains to reduce computational costs. Such a variational 

concept, here referred as Lighthill Surface, will be used in a combination with high-fidelity CFD data to model the 

presence of drone’s propellers to later determine their characteristic acoustic signature in near and far field conditions. 

4.2 Computational Fluid Dynamics Simulations  

The CFD simulation is performed using scFLOW v2021 [17] solver for the drone of dimensions depicted in Figure 1a. 

Calculations were performed on two configurations, a full 3D model with four propellers and a quarter model with one 

propeller and two symmetry boundary conditions. The computational domain is represented by a volume of dimensions 

2.8 m × 2.8 m ×  3.1 m with two main boundary conditions at its sides: a stress-free on the top and bottom sides and outlet 

boundary conditions (pressure outlet) at the other sides. Besides, for modelling the propellers, four rotating domains are 

placed in connection with the static domains by using sliding meshes. Inside each rotating domain, the blade surfaces are 

modelled as non-slip boundary walls in the rotating frame of reference. 
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Figure 5: (a) Detail of the CFD mesh. (b) Instantaneous norm of the velocity and Q-criterion at t=0.015817s. 

The fluid is air at 20°C with constant density 𝜌0 = 1.205 kg/m3, speed of sound 𝑐0 = 343.6 m/s and dynamic viscosity μ =

1.83 × 10−5Pa. s. An incompressible pressure-based LES solver with WALE (Wall-Adapting Local Eddy-Viscosity) sub-

grid scale turbulence model was used with a time step of Δ𝑡 = 2.2765 × 10−6 s. The solution of an equivalent steady RANS 

calculation is set as initial condition for the LES simulation. The mesh for the full model ( Figure 5a) consists of 2.7 × 106 

polyhedral and hexahedral (voxel) cells while for the quarter model, the mesh contains around 7.0 × 105 cells. In Figure 

5b, the instantaneous flow solution for the full propeller configuration with 18303 RPM for each propeller is presented. 

As a first step, since the rotation speed of each propeller is unknown, the quarter model is validated to reduce the 

computational cost of the CFD simulation. Indeed, because the quarter model contains significantly less cells than the full 

model, its computational cost (~1163 CPU-hours) is reduced (~7550 CPU-hours for full model). In Figure 6a, the 

instantaneous lift computed from the full model (black line) and four times the lift from the quarter model (red line) are 

depicted. The lifts computed are very similar, the average lift difference between the full model (~10.67 N) and the quarter 

model (~10.71 N) is not greater than 0.37%. Furthermore, the lift spectra (Figure 6b) allow observing further similarities 

in the frequency content between both CFD models. Given such similarities and lower computational cost, a more refined 

quarter model (1.1 × 106cells , ~3160 CPU-hours) is used in the aeroacoustic computations with 9 rotation speeds varying 

from -40% to 0% from the reference value (i.e. 18303 RPM). Such simulations are performed for 105 time steps or 87 

propeller rotations) discarding the first 8 rotations to ensure capturing the physics in the established regime. For all the 

CFD computations a cluster architecture composed of Intel Xeon Gold 6140 @ 2.3 GHz processors was used. 

 
Figure 6: Instantaneous lift using the full CFD model (black line) and the quarter model (red line). (b) time evolution 

between the 30th and 32nd rotation of the propellers. (b) spectra for the instantaneous lifts. 

 

4.3 Computational Aeroacoustics Simulations 

The acoustic propagation of aerodynamic sources generated by the four propellers is now addressed. The drone is 

immersed in a fluid at rest placed in a semi-anechoic space. To model the ground effects, mirror virtual microphones are 

considered. The fluid media for the propagation of the acoustic waves is assumed homogeneous with constant mass 
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density and speed of sound (same as in the CFD model). The acoustic solution is computed using Actran [16] by solving 

the variational FEM formulation of Lighthill’s analogy (section 4.14.3) in the frequency domain. 

 
Figure 7: CAA models and results. (a) numerical mesh and components used in Actran simulation. (b) Acoustic 

validation of the full model CFD data vs. 1/4 CFD data at microphone 7 at different propellers speeds. 

A unique acoustic model for the full drone is used (Figure 7a). The aerodynamic sources propagating into the acoustic 

component and surrounding each propeller are modelled using four Lighthill Surfaces (in red, Figure 7a). The acoustic 

component (in blue, Figure 7a) is enclosed by infinite elements [14] (in yellow, Figure 7a, with order ≥10) acting as a 

non-reflecting boundary condition and also serving to calculate the wave solution in the far field. The model is valid up 

to a computational frequency of 5kHz.  The mesh is composed by 4.12 × 105 nodes and 2.48 × 105 elements leading to 

5.09 × 105 degrees of freedom. The computation is carried out by Actran 2021 using the MUMPS in-core solver with 4 

processes and 4 threads per process (Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz). The computation time per 

frequency is around 1min 25s and the maximum consumed RAM per process reaches 36 GB leading to a total 

computational cost around ~185 CPU-hours for the total 492 frequencies. 

 
Figure 8: Pressure maps in dBA for 610.1 Hz (BPF) and 5000Hz. The four propellers rotate at 18303 RPM. 

Similar to section 4.2, the validation the quarter model with respect to the full CFD model is performed but now with 

acoustical relevant metrics. In Figure 7, two acoustic computations are compared for point 7: (i) in black, an acoustic 

computation using a full CFD model with asymmetry in the rotation speed of the propellers as: +5% for UR (17383 RPM), 

0% for UL (18303 RPM), +10% for LL (20133 RPM) and +5% (19218 RPM) for LR; (ii) in red, an acoustic computation 

using 4 different quarter CFD models placed at each one of Lighthill Surfaces to emulate the full CFD model. The 

similarities of both curves are acceptable validating the use of a quarter model for the aeroacoustic computations. As an 

example, acoustic maps at two frequencies (610.05 Hz or BPF at 18303 RPM) and 5kHz are depicted in Figure 8a,b. 

Finally, to generate the data to be used to train the machine learning algorithm a full 3D acoustic simulation will be used 

with all the permutations of 9 rotation speeds (from -40% to 0% deviation) and four propellers. 
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5. Supervised Learning and Hyperparameter Tuning 

For each virtual microphone spectrum, a prediction model is chosen among the following five regression algorithms using 

scikit-learn package [15]: (i) Randomized decision trees or Extra-Trees (ET); (ii) Random forest (RF); (iii) Gradient 

Boosting (GB); (iv) Adaptive Boosting (AB); and (v) Support Vector Machine (SVM). Such a selection is based on their 

popularity and common use in the literature. Furthermore, the quality of predictions of those regressors depends on two 

main factors, the data to be used to train the model (computed by CAA and CFD simulations, see sections 4.2 and 4.3) 

and a series of optimal hyperparameters specific to each regressor. To obtain such hyperparameters a k-fold (k=5) cross-

validation randomized grid search was performed.  

 Regressor  Hyper Parameters Grid 

Extra Trees (ET) Number of estimators: 5-2000; Max depth: 5-20; Minimum samples on leaf: 10-100. 

Random Forest (RF) Number of estimators: 50-2000; Max depth: 5-20; Minimum samples on leaf: 10-100. 

Gradient Boosting (GB) Number of estimators: 50-1000; Max depth: 1-20; Sub-samples: 0.1-0.95; Learning 

Rate: 0.001-0.1 log uniform distribution 

Ada Boosting (AB) Number of estimators: 50-1000; Learning Rate: 0.001-1.0, log uniform distribution 

Support Vector Machine (SVM) Regularization parameter (C): 1-1000, log uniform; Kernel coefficient (gamma): 

0.0001-0.1, Kernel: radial basis function (rbf) and linear.  

Table 1: Hyperparameter grid for each regressor model. 

To perform the cross-validation, the numerical data was divided in two groups: (i) a training set with 80% of the 

calculations; and (ii) a test set with the other 20% remaining. The hyperparameters to be optimized for each regressor are 

summarized in Table 1. The selection of the algorithm as well as the optimal hyperparameters is done by using the mean 

absolute error (MAE) as the reference metric. This metric is selected due to the natural way of interpreting the results of 

the cross-validation and for its suitability for regression problems. The cross-validation study is performed on point 7, 

which contains unpolluted acoustic results as explained in section 3. 

 
Figure 9: MAE for regressor models using the best hyperparameters at point 7. (a) MAE in test set [dBA] for each 

model chosen. (b) MAE in test and training sets for GB regressor (selected model). 

The randomized grid search allowed to determine the best regressor models (with their hyperparameters) of each class 

given the selected error metric, i.e. MAE in dBA. The MAE obtained for each regressor model is plotted for point 7 in 

Figure 9a at each frequency. For the best regressor model (GB2), the maximum absolute error estimated is around 1.19 

dBA, quite low for acoustics comparison standards. Furthermore, the calculation of the maximum absolute error in the 

test and training set (Figure 9b) denotes a good fit, i.e. both errors are low enough with test error slightly higher than the 

training error. This best regressor will be used in the next section for the predictions. 

 
2 For instance, the hyperparameters of the best GB regressor model for point 7 are: (i) learning rate = 0.05399484409787431; (ii) max 

depth = 4; (iii) number of estimators = 921; and (v) sub-sample = 0.7726689489062432.  
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Figure 10: A graphical recombination tool to generate noise results in real-time based on machine learning techniques. 

 

6. Postprocessing and Result Predictions  

Using the best regressor(s) computed in section 5, a recombination tool for rapid noise computation was developed as 

depicted in Figure 10. The machine learning objects (regressors with the best parameters) are pre-computed and stored to 

be later loaded in the application. Then, the user may investigate in real-time which rotation speed variation for each 

propeller generates any change in the drone’s acoustic signature at any given point. Besides, the technical analysis of 

classic dBA vs. frequency curves, it is also possible for the user to listen to the experimental sound (from measurements) 

and to see the relative position of the measured point with respect to the drone for a better perspective. 

 
Figure 11: Prediction for power setting measured at 18303 RPM. (a) local optimal close to experimental values for point 

7; (b) local optimal close to experimental values for point 2. The rotation speed values are depicted on each figure. For 

each point a different predictor with different set of hyperparameters was used.  

As a second goal, the best regressor model is used to determine which variation of rotation speeds approaches the best to 

the experimental data. Such a minimization problem is addressed as follows: (i) first, with frequency of the highest 

amplitude peak from the experimental data (BPF), the expected rotation speed is computed; (ii) using such a value as 

numerical seed, a grid search around -5% and +5% of deviation is performed; (iii) the deviation values leading to a local 

minimum between the experimental data and predicted spectrum are selected. In addition, the choice of a grid search 

method is preferred rather than classic minimization algorithms (i.e. gradient descent) because the derivative of the 

regression functions is not guaranteed to be continuous. Due to physical space in the present publication, only the 

experimental values corresponding to the highest power supply (measured ~18303 RPM) are presented. In Figure 11a, 

the numerical prediction and experiments are presented for point 7 for the optimal rotation speeds. It can be observed that, 

the predictions reconstructed with the regression algorithm match well the experimental data, i.e. several peak’s 
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amplitudes are retrieved (including the first two peaks) and general the trend is obtained in the whole frequency range. In 

addition, it is worth noticing that the prediction model can retrieve the first peak around the rotation speeds. Such a peak 

probably emerges due to acoustic interactions of propellers at slight deviations in the rotation speeds. Furthermore, as 

shown in Figure 11b, the prediction and experiments are compared for point 2. In this comparison, the results match in 

the frequency prediction of the two first peaks (rotation speed and 1st BPF), however the broadband trend of the predictions 

values diverges from the experimental results. One possible explanation of this is the lack of sufficient broadband noise 

computed in the CAA+CFD step, usually improved as the CFD mesh size decreases. 

 

7. Conclusions and Perspectives 

A combined CAA, CFD and machine learning methodology was proposed to address drone noise calculations given the 

uncertainties of the rotation speed values. Such uncertainties are common in real-world conditions for low-cost drone 

systems. Indeed, a deterministic approach would be unfeasible in such configurations because it may lead to a large 

combination of cases to be computed. The methodology relies on high-fidelity CFD solutions to be later used to compute 

aeroacoustic sources being propagated by a CAA-FEM solver in frequency domain. The acoustic solution is then treated 

as input data to train the machine learning models (regressors) for further predictions. Besides, the best selected regressors 

in combination with a visual application allow a real-time results reconstruction given the values of rotation speeds for 

each propeller. Such a rapid recombination has proven to be very useful to understand the behaviour of a physical system 

subjected to a change of input conditions. Furthermore, using the best predictor, the optimal rotation speed values of each 

propeller was estimated so that minimizes the absolute error with respect to the experimental data. Finally, future works 

include: (i) to generate sounds (e.g. *.wav files) from the acoustic predictions and maps to visualize the propagation in 

real-time; (ii) to include other effects of such as pitch variation of blades, installation effects, cross-wind, etc; and (iii) 

apply the methodology to other multi-propeller aircrafts configurations, e.g. passenger drones, fixed-wing aircrafts with 

disturbed propulsion, among others. 
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