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Abstract

In recent years, a significant proliferation in the development and commercialization of small Unmanned Aircraft Systems
(SUAS) usually known as “drones” has drastically changed the common use of civil airspace. Indeed, drones have captured
the imagination of many entrepreneurs because they can offer a wide range of possibilities, i.e. commercial services,
security and environmental applications, in which classic manned aviation struggles. Furthermore, the rapid technological
pace and the use of drones by civilians has left little time for the development of appropriate regulatory frameworks
concerning their safe and fair use. Consequently, the absence of regulations may lead to misuse of this technology
negatively impacting its image, especially due to the noise emissions. Although they are not very loud, the frequency-
shifting buzzing noise from drones is perceived as annoying by most people. Especially as the payload increases, in take-
off conditions, the propellers need to increment their rotation speed changing the overall acoustic signature in terms of
amplitude and tonal frequencies. In this study, a hybrid computational aeroacoustics approach to predict noise from drones
at different payload conditions is presented. The method to assess this acoustic signature relies on a prior computation of
the flow field by means of a CFD analysis, then aeroacoustics sources based on Lighthill’s acoustic analogy are used to
solve the wave propagation problem in combination with machine learning techniques for generation of solutions in real-
time. The transient CFD computations are calculated using a time-marching LES simulation with a WALE sub-grid scale
in a finite volume numerical context. In contrast, the acoustic propagation is predicted using a FEM in the frequency
domain. The test case consists of an in-plane, 2-blade quadcopter at three different rotation speeds or payload conditions.
The sound levels are estimated at different directivity angles in a broadband spectrum. Finally, the numerical method is
validated against experimental data available for comparisons.

1. Introduction

The rapid progress in technological developments of small Unmanned Aircraft Systems (SUAS) or simply “drones” have
drastically reduced their costs of development, production, and operations. The democratization of such a technology is
offering a large variety of services to businesses and citizens while placing new demands on the use of the already-
congested civil airspace [1,2]. Furthermore, to allow a safe growth of the drone-derived economy, important efforts are
underway around the world to establish a coherent regulatory framework for the use of drones [3,4]. Indeed, one of the
important aspects of drone operations is noise. For instance, depending on the present ambient noise (e.g. road traffic) the
noise generated by drones may lead to high perceived loudness and annoyance [5].

Modern numerical techniques may help reduce noise from drones. Certainly, the insights provided by the numerical
simulation guide engineers and scientists in the discovery of new strategies leading to quieter drone systems. A typical
approach relies on high-fidelity computational fluid dynamics (CFD) techniques coupled with solutions of Ffowcs
Williams-Hawkings® (FW-H) analogy [6] for permeable or solid boundaries [7]. This deterministic approach usually
requires an apriori knowledge of the parameter’s values at initial conditions, i.e. rotation speed of each rotor, crosswind,
pitch angle of the blades’ propeller, etc. Remarkable demonstrations can be found in the literature for drone noise
predictions [8] or general multi-propeller aircraft noise calculations [9] requiring 8 x 10% and 2.5 x 105 CPU-hours
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respectively. In real-world situations, initial conditions may vary over a range or its value is simply unknown. Such a
situation renders arduous the task of addressing drone (or in general multi-propeller aircraft) noise using a deterministic
approach given the cost of the state-of-the-art computational techniques. This is especially the case for low-cost drones
in which the market revenue, the ephemeral product life cycle, and economical components, do not simply justify such
an investment.

The present work addresses the noise prediction of drones from a statistical perspective. The statistical approach used
relies on a combination of CFD, CAA (Computational Aeroacoustics) and machine learning techniques to deal with
uncertainties or variations of payload conditions. Indeed, the different payloads are handled by the drone’s lift, strongly
depending on the rotation speed of the propellers. Besides the expected increase of overall noise for higher rotational
speeds, the acoustic signature can also change, shifting the tonal and broadband noise components towards high (or low)
frequencies. This represents an additional constraint to the present methodology.

This study starts with quantitative and qualitative analyses of the experimental data (section 2) revealing uncertainties at
the initial conditions. Then, a machine learning strategy is presented in section 3, followed by the description of CFD
(section 4.2) and CAA (section 4.3) methodologies. With the data produced by the CFD/CAA processes, a hyper-
parameter analysis is performed to determine the best machine learning model (section 5). The best predictor model is
presented in the context of fulfilling two goals: real-time noise prediction of drone systems and determination of rotation
speed(s) leading to a noise prediction matching experimental data. Finally, the results are discussed and analysed (section
6) followed by concluding remarks and possible further investigations (section 7).

2. Experimental Data and Data Analysis

The drone used for the measurements is a low-cost (~70%$ - Jan 2021) quadcopter/double propeller LHI-QAV250 model,
very popular among drone enthusiasts. Such a model can be found online as a builder kit. The dimensions of the drone
model are depicted in Figure 1a. In the measurements, the drone was attached to a fixed platform at 1.97 m from the floor
and 8 measurement points were defined at iso-radius (R = 0.6 m) from the drone’s centre of gravity. The measurements
were performed on the semi-anechoic chamber facilities at Hosei University Urban Air Mobility Laboratory using a RION
NL-31 sound level meter [10].
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Figure 1: Drone configuration used in measurements and calculations. (2) Dimensions and directions of rotation; (b)
Relative position of the microphones (sub-figure not in scale).

Usually, low-cost drones are equipped with brushless DC motors with no feedback control to determine the rotation speed.
For this reason, the rotation speed is established by the supplied power and then measured using an optical tachometer.
Three different power supplies are considered leading to the following measured speeds in RPM (Revolution Per Minute),
i.e. 15379, 17140 and 18303. For better referencing, the propellers were tagged as (Figure 1b): upper-right (UR - red),
upper-left (UL - green), lower-left (LL - blue), and lower-right (LR - yellow). The direction of rotation for each propeller
is indicated as well in Figure 1a. Finally, the sound measured was obtained in two different formats, namely spectrum in
dBA and as a sound file (*.wav).



Prior to the CFD and CAA calculations, the sound files and the experimental data are analyzed to detect possible
anomalies. For instance, for points 1 and 5, an audio inspection revealed a significant blow sound, probably induced by
the drone’s flow stream at the discharge (point 1) and suction (point 5) sides. This can be observed in the spectrum for
point 1 (Figure 2a) and its spectrogram (Figure 2b). Indeed, in contrast to point 1, in point 7 (far from the flow stream),
the spectrum (Figure 3a) and spectrogram (Figure 3b) contain well-defined peaks at the rotation speed and harmonics.
For practical purposes, such measurement points will be not considered in the numerical comparisons.
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Figure 2: Sound analysis of the *.wav file for point 1 at 18303 RPM measured. (a) Spectrum. (b) Spectrogram.

Additionally, a closer observation at the spectrum peaks for point 7 (Figure 3a) reveals further irregularities. For instance,
the first two peaks in the spectrum and spectrogram (230 Hz and 456 Hz) may correspond to the propeller’s rotation speed
and its first blade passing frequency (BPF) for a rotation speed around ~13800 RPM. Yet, for a rotation speed of 18303
RPM (measured), such peaks should be located at ~305 Hz and ~610 Hz.
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Figure 3: Same as Figure 2 but for point 7.

Besides, another interesting phenomenon is detected by analyzing the relative peak positions in the spectrum. The
different peaks start to separate from each other as the frequency increases. For instance, the frequency width of the 6™
peak is around 59 Hz (1407 Hz — 1348 Hz). This may be interpreted as a difference of around ~10 Hz at the 1% harmonic
or a ~600 RPM difference between at least two propellers. Such irregularities may be explained by errors in the
measurements of the optical tachometer and the difficult control of the rotation speed in low-cost drones. Consequently,
due to the uncertainty of rotation speed values measured by the optical tachometer and the relative difference between the
rotation speeds of any pair of propellers, a deterministic CFD and CAA calculation is unfeasible. Therefore, a statistical
approach for noise prediction of drones using supervised machine learning techniques is proposed.
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3. Machine Learning Strategy

In this section, a machine learning strategy is proposed using acoustics data obtained from CAA and CFD methods. Such
a strategy is intended to determine in real-time the noise at different locations produced by the drone given the variation
of rotation speed for each propeller.
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Figure 4: Machine learning strategy in a combination of CAA and CFD simulations.

The general strategy is depicted in Figure 4:. First, CFD calculations using a reduced quarter model are performed by
varying the rotation speed from -40% to 0% of deviation from the reference rotation speed selected (18303 RPM). The
justifications for using a quarter model in the CFD calculation instead of a full model are described in sections 4.2 and
4.3. The flow information for each rotation speed (i.e. velocity, pressure and density) is exported to be used in the
computation of aeroacoustic sources. Then, the aeroacoustic sources are translated into frequency domain and used in the
CAA solver to estimate the sound pressure level up to 5 kHz using 492 discrete frequency values. It is worth noticing
that, since the time signal of the flow variables is sufficiently long, this is divided in sub-signals to generate 7 sub-load-
cases per rotation speed deviation. Furthermore, given the 9 rotation speed deviations computed for the 4 propellers and
7 sub-load cases, the total amount of realisations carried by the CAA solver raises up to 882! data samples. Because the
data to be used in the machine learning procedure originates from computational physics algorithms, the selection of
machine learning features is already determined. Indeed, the features correspond to the deviations of rotation speed for
each propeller.

The 882 data samples from the 8 virtual microphones at 492 discrete frequencies are then divided in two groups, i.e. test
and training sets. Such information is first used in the hyperparameter tunning (section 5) for each regressor model
selected. For the hyperparameter tuning, a random search is performed to determine the best optimal parameters given an
error metric. Finally, two goals to achieved are defined using the best regressor model: (i) a graphical recombination tool
is developed to estimate in real-time the noise at each virtual microphone for a user-defined set of rotation speeds; (ii) the
combination of rotation speed for each propeller is estimated to minimize the error of the predicted spectrum with respect
to the experimental data available.

1 The total number of load-cases were computed as 7 x C(9,4) = 882 where C is the combinatorial operator.
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4. Computational Aeroacoustics and Fluid Dynamics Procedures
4.1 Theoretical background

Lighthill’s rearrangement of fluid dynamics equations into the form of acoustic analogy is written as follows [11,12]:

0%p @
W_ C§V2p =V VTij,

the left-hand side (l.h.s) of equation (1) represents a wave equation for the density p while the right-hand side (r.h.s.)
contains an equivalent source term where T;; = puu; + 8;;(p — cp) — 7;; is commonly referred as Lighthill’s tensor.
Furthermore, u;, p, ¢, and z;; are the fluid velocity, pressure, speed of sound and viscous tensor respectively, while §;; is
the Kronecker delta. Assuming constant speed of sound c,, a variational formulation [13] is derived by multiplying
equation (1) by a test function p* and integrating over a region Q as follows:
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Withv-(fg) =fV-g+ g-Vf, the spatial derivative can be transferred to the test function p* leading to:
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Using Gauss’s theorem, i.e. [,V - g dQ = ¢.g -ndrl, the last terms at both sides of equation (3) are re-written as surface
integrals and regrouped, therefore:
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part of integrant in the surface integral of equation (4), i.e. V- T;; + ¢3Vp may be expressed as V- (pusu; + 8;p — 7;;) =
—d(pu;)/ ot corresponding to the time derivate of the momentum pu;. Therefore, equation (4) is finally expressed as:
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The variational formulation of Lighthill’s analogy contains two terms, a volume term referred as Lighthill Volume and a
surface term or Lighthill Surface. This variational formulation is useful in the context of finite element method (FEM)
and CAA. For instance, the volume integral only requires first spatial derivatives from the flow solution, convenient for
standard low spatial order CFD techniques. Besides, the surface integral only requires first-order time derivatives of the
flow information, straightforward in the frequency domain. Furthermore, such a surface integral vanishes: (i) at the solid
walls (u.n = 0) coinciding with the natural rigid wall conditions for acoustics in FEM or non-slip wall condition in CFD;
and (ii) in the far field where sources from turbulence are inexistent. Besides, this surface integral is useful for modelling
the presence of rotating bodies or in the case of truncated domains to reduce computational costs. Such a variational
concept, here referred as Lighthill Surface, will be used in a combination with high-fidelity CFD data to model the
presence of drone’s propellers to later determine their characteristic acoustic signature in near and far field conditions.

4.2 Computational Fluid Dynamics Simulations

The CFD simulation is performed using scFLOW v2021 [17] solver for the drone of dimensions depicted in Figure la.
Calculations were performed on two configurations, a full 3D model with four propellers and a quarter model with one
propeller and two symmetry boundary conditions. The computational domain is represented by a volume of dimensions
2.8m x 2.8m x 3.1 mwith two main boundary conditions at its sides: a stress-free on the top and bottom sides and outlet
boundary conditions (pressure outlet) at the other sides. Besides, for modelling the propellers, four rotating domains are
placed in connection with the static domains by using sliding meshes. Inside each rotating domain, the blade surfaces are
modelled as non-slip boundary walls in the rotating frame of reference.
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Figure 5: (a) Detail of the CFD mesh. (b) Instantaneous norm of the velocity and Q-criterion at t=0.015817s.
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The fluid is air at 20°C with constant density p, = 1.205 kg/m3, speed of sound ¢, = 343.6 m/s and dynamic viscosity p =
1.83 X 10~5Pa.s. An incompressible pressure-based LES solver with WALE (Wall-Adapting Local Eddy-Viscosity) sub-
grid scale turbulence model was used with a time step of At = 2.2765 x 10~ s. The solution of an equivalent steady RANS
calculation is set as initial condition for the LES simulation. The mesh for the full model ( Figure 5a) consists of 2.7 x 10¢
polyhedral and hexahedral (voxel) cells while for the quarter model, the mesh contains around 7.0 x 105 cells. In Figure
5b, the instantaneous flow solution for the full propeller configuration with 18303 RPM for each propeller is presented.

As a first step, since the rotation speed of each propeller is unknown, the quarter model is validated to reduce the
computational cost of the CFD simulation. Indeed, because the quarter model contains significantly less cells than the full
model, its computational cost (~1163 CPU-hours) is reduced (~7550 CPU-hours for full model). In Figure 6a, the
instantaneous lift computed from the full model (black line) and four times the lift from the quarter model (red line) are
depicted. The lifts computed are very similar, the average lift difference between the full model (~10.67 N) and the quarter
model (~10.71 N) is not greater than 0.37%. Furthermore, the lift spectra (Figure 6b) allow observing further similarities
in the frequency content between both CFD models. Given such similarities and lower computational cost, a more refined
quarter model (1.1 x 106cells, ~3160 CPU-hours) is used in the aeroacoustic computations with 9 rotation speeds varying
from -40% to 0% from the reference value (i.e. 18303 RPM). Such simulations are performed for 10> time steps or 87
propeller rotations) discarding the first 8 rotations to ensure capturing the physics in the established regime. For all the
CFD computations a cluster architecture composed of Intel Xeon Gold 6140 @ 2.3 GHz processors was used.

Instantaneous Lift [N] Lift Spectrum [N]
11504 () — FUIlCFD- Lift | Mean Value : 10.6691 (b)
—— 4 x Quarter - Lift | Mean Value : 10.7082 o
11.25 10
11.00
= — 1072
£ 1075 =
£ £
~ 1050 10-3
10.25
10744 - .
10.00 —— Full CFD - Lift | Max Y :10.6701
—— 4 x Quarter - Lift | Max Y : 10.7106
9.75 T T T T T T T T T T
30.00 30.25 30.50 30.75 31.00 31.25 31.50 31.75 32.00 10? 103 104
Rotation Number [-] Frequency [Hz]

Figure 6: Instantaneous lift using the full CFD model (black line) and the quarter model (red line). (b) time evolution
between the 30" and 32" rotation of the propellers. (b) spectra for the instantaneous lifts.

4.3 Computational Aeroacoustics Simulations

The acoustic propagation of aerodynamic sources generated by the four propellers is now addressed. The drone is
immersed in a fluid at rest placed in a semi-anechoic space. To model the ground effects, mirror virtual microphones are
considered. The fluid media for the propagation of the acoustic waves is assumed homogeneous with constant mass
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density and speed of sound (same as in the CFD model). The acoustic solution is computed using Actran [16] by solving
the variational FEM formulation of Lighthill’s analogy (section 4.14.3) in the frequency domain.
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Figure 7: CAA models and results. (a) numerical mesh and components used in Actran simulation. (b) Acoustic
validation of the full model CFD data vs. 1/4 CFD data at microphone 7 at different propellers speeds.

A unique acoustic model for the full drone is used (Figure 7a). The aerodynamic sources propagating into the acoustic
component and surrounding each propeller are modelled using four Lighthill Surfaces (in red, Figure 7a). The acoustic
component (in blue, Figure 7a) is enclosed by infinite elements [14] (in yellow, Figure 7a, with order >10) acting as a
non-reflecting boundary condition and also serving to calculate the wave solution in the far field. The model is valid up
to a computational frequency of 5kHz. The mesh is composed by 4.12 x 10% nodes and 2.48 x 10> elements leading to
5.09 x 10° degrees of freedom. The computation is carried out by Actran 2021 using the MUMPS in-core solver with 4
processes and 4 threads per process (Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz). The computation time per
frequency is around 1min 25s and the maximum consumed RAM per process reaches 36 GB leading to a total
computational cost around ~185 CPU-hours for the total 492 frequencies.

(a) (b)

Figure 8: Pressure maps in dBA for 610.1 Hz (BPF) and 5000Hz. The four propellers rotate at 18303 RPM.

Similar to section 4.2, the validation the quarter model with respect to the full CFD model is performed but now with
acoustical relevant metrics. In Figure 7, two acoustic computations are compared for point 7: (i) in black, an acoustic
computation using a full CFD model with asymmetry in the rotation speed of the propellers as: +5% for UR (17383 RPM),
0% for UL (18303 RPM), +10% for LL (20133 RPM) and +5% (19218 RPM) for LR; (ii) in red, an acoustic computation
using 4 different quarter CFD models placed at each one of Lighthill Surfaces to emulate the full CFD model. The
similarities of both curves are acceptable validating the use of a quarter model for the aeroacoustic computations. As an
example, acoustic maps at two frequencies (610.05 Hz or BPF at 18303 RPM) and 5kHz are depicted in Figure 8a,b.
Finally, to generate the data to be used to train the machine learning algorithm a full 3D acoustic simulation will be used
with all the permutations of 9 rotation speeds (from -40% to 0% deviation) and four propellers.
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5. Supervised Learning and Hyperparameter Tuning

For each virtual microphone spectrum, a prediction model is chosen among the following five regression algorithms using
scikit-learn package [15]: (i) Randomized decision trees or Extra-Trees (ET); (ii) Random forest (RF); (iii) Gradient
Boosting (GB); (iv) Adaptive Boosting (AB); and (V) Support Vector Machine (SVM). Such a selection is based on their
popularity and common use in the literature. Furthermore, the quality of predictions of those regressors depends on two
main factors, the data to be used to train the model (computed by CAA and CFD simulations, see sections 4.2 and 4.3)
and a series of optimal hyperparameters specific to each regressor. To obtain such hyperparameters a k-fold (k=5) cross-
validation randomized grid search was performed.

Regressor Hyper Parameters Grid
Extra Trees (ET) Number of estimators: 5-2000; Max depth: 5-20; Minimum samples on leaf: 10-100.
Random Forest (RF) Number of estimators: 50-2000; Max depth: 5-20; Minimum samples on leaf: 10-100.
Gradient Boosting (GB) Number of estimators: 50-1000; Max depth: 1-20; Sub-samples: ©.1-0.95; Learning
Rate: 0.001-0.1 log uniform distribution
Ada Boosting (AB) Number of estimators: 50-1000; Learning Rate: ©.001-1.0, log uniform distribution
Support Vector Machine (SVM) Regularization parameter (C): 1-1000, log uniform; Kernel coefficient (gamma):

0.0001-0.1, Kernel: radial basis function (rbf) and linear.
Table 1: Hyperparameter grid for each regressor model.

To perform the cross-validation, the numerical data was divided in two groups: (i) a training set with 80% of the
calculations; and (ii) a test set with the other 20% remaining. The hyperparameters to be optimized for each regressor are
summarized in Table 1. The selection of the algorithm as well as the optimal hyperparameters is done by using the mean
absolute error (MAE) as the reference metric. This metric is selected due to the natural way of interpreting the results of
the cross-validation and for its suitability for regression problems. The cross-validation study is performed on point 7,
which contains unpolluted acoustic results as explained in section 3.
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Figure 9: MAE for regressor models using the best hyperparameters at point 7. (2) MAE in test set [dBA] for each
model chosen. (b) MAE in test and training sets for GB regressor (selected model).

The randomized grid search allowed to determine the best regressor models (with their hyperparameters) of each class
given the selected error metric, i.e. MAE in dBA. The MAE obtained for each regressor model is plotted for point 7 in
Figure 9a at each frequency. For the best regressor model (GB?), the maximum absolute error estimated is around 1.19
dBA, quite low for acoustics comparison standards. Furthermore, the calculation of the maximum absolute error in the
test and training set (Figure 9b) denotes a good fit, i.e. both errors are low enough with test error slightly higher than the
training error. This best regressor will be used in the next section for the predictions.

2 For instance, the hyperparameters of the best GB regressor model for point 7 are: (i) learning rate = 0.05399484409787431; (ii) max
depth = 4; (iii) number of estimators = 921; and (v) sub-sample = 0.7726689489062432.
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Figure 10: A graphical recombination tool to generate noise results in real-time based on machine learning techniques.

6. Postprocessing and Result Predictions

Using the best regressor(s) computed in section 5, a recombination tool for rapid noise computation was developed as
depicted in Figure 10. The machine learning objects (regressors with the best parameters) are pre-computed and stored to
be later loaded in the application. Then, the user may investigate in real-time which rotation speed variation for each
propeller generates any change in the drone’s acoustic signature at any given point. Besides, the technical analysis of
classic dBA vs. frequency curves, it is also possible for the user to listen to the experimental sound (from measurements)
and to see the relative position of the measured point with respect to the drone for a better perspective.
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Figure 11: Prediction for power setting measured at 18303 RPM. () local optimal close to experimental values for point
7; (b) local optimal close to experimental values for point 2. The rotation speed values are depicted on each figure. For
each point a different predictor with different set of hyperparameters was used.

As a second goal, the best regressor model is used to determine which variation of rotation speeds approaches the best to
the experimental data. Such a minimization problem is addressed as follows: (i) first, with frequency of the highest
amplitude peak from the experimental data (BPF), the expected rotation speed is computed; (ii) using such a value as
numerical seed, a grid search around -5% and +5% of deviation is performed; (iii) the deviation values leading to a local
minimum between the experimental data and predicted spectrum are selected. In addition, the choice of a grid search
method is preferred rather than classic minimization algorithms (i.e. gradient descent) because the derivative of the
regression functions is not guaranteed to be continuous. Due to physical space in the present publication, only the
experimental values corresponding to the highest power supply (measured ~18303 RPM) are presented. In Figure 11a,
the numerical prediction and experiments are presented for point 7 for the optimal rotation speeds. It can be observed that,
the predictions reconstructed with the regression algorithm match well the experimental data, i.e. several peak’s
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amplitudes are retrieved (including the first two peaks) and general the trend is obtained in the whole frequency range. In
addition, it is worth noticing that the prediction model can retrieve the first peak around the rotation speeds. Such a peak
probably emerges due to acoustic interactions of propellers at slight deviations in the rotation speeds. Furthermore, as
shown in Figure 11b, the prediction and experiments are compared for point 2. In this comparison, the results match in
the frequency prediction of the two first peaks (rotation speed and 1% BPF), however the broadband trend of the predictions
values diverges from the experimental results. One possible explanation of this is the lack of sufficient broadband noise
computed in the CAA+CFD step, usually improved as the CFD mesh size decreases.

7. Conclusions and Perspectives

A combined CAA, CFD and machine learning methodology was proposed to address drone noise calculations given the
uncertainties of the rotation speed values. Such uncertainties are common in real-world conditions for low-cost drone
systems. Indeed, a deterministic approach would be unfeasible in such configurations because it may lead to a large
combination of cases to be computed. The methodology relies on high-fidelity CFD solutions to be later used to compute
aeroacoustic sources being propagated by a CAA-FEM solver in frequency domain. The acoustic solution is then treated
as input data to train the machine learning models (regressors) for further predictions. Besides, the best selected regressors
in combination with a visual application allow a real-time results reconstruction given the values of rotation speeds for
each propeller. Such a rapid recombination has proven to be very useful to understand the behaviour of a physical system
subjected to a change of input conditions. Furthermore, using the best predictor, the optimal rotation speed values of each
propeller was estimated so that minimizes the absolute error with respect to the experimental data. Finally, future works
include: (i) to generate sounds (e.g. *.wav files) from the acoustic predictions and maps to visualize the propagation in
real-time; (ii) to include other effects of such as pitch variation of blades, installation effects, cross-wind, etc; and (iii)
apply the methodology to other multi-propeller aircrafts configurations, e.g. passenger drones, fixed-wing aircrafts with
disturbed propulsion, among others.
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