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ABSTRACT 

 

The rapid progress in technological developments of small Unmanned Aircraft Systems (sUAS) or 

simply "drones" has produced a significant proliferation of this technology. From multinational busi-

nesses to drone enthusiasts, such a technology can offer a wide range of possibilities, i.e., commercial 

services, security, and environmental applications, while placing new demands in the already-con-

gested civil airspace. Noise emission is a key factor that is being addressed with high-fidelity com-

putational fluid dynamics (CFD) and aeroacoustics (CAA) techniques. However, due to uncertainties 

of flow conditions, wide ranges of propellers' speed variations, and different payload requirements, 

a complete numerical prediction varying such parameters is unfeasible. In this study, a machine 

learning-based approach is proposed in combination with high-fidelity CFD and CAA techniques to 

predict drone noise emission given a wide variation of payloads or propellers’ speeds. The transient 

CFD computations are calculated using a time-marching LES simulation with a WALE sub-grid 

scale. In contrast, the acoustic propagation is predicted using a finite element method in the fre-

quency domain. Finally, the machine learning strategy is presented in the context of fulfilling two 

goals: (i) real-time noise prediction of drone systems; and (ii) determination of propeller’s rotation 

speeds leading to a noise prediction matching experimental data. 

 

1.    INTRODUCTION 

Innovations in the technology of small Unmanned Aircraft Systems (sUAS) or simply “drones” have 

drastically reduced their general costs, from development to operations. This democratization is of-

fering a large variety of possibilities to businesses and citizens while increasing the demands on the 

use of the already-congested civil airspace [1,2]. Besides, to establish a safe growth of the drone-
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derived economy, important efforts are underway worldwide to set up an articulate regulatory frame-

work for the use of drones [3,4]. Indeed, a crucial aspect of drone operations is noise. For example, 

depending on the present ambient noise (e.g. city noise), the noise generated by drones may lead to 

high perceived loudness and annoyance [5]. 

 

Modern numerical techniques may help reduce noise from drones. Undoubtedly, the insights provided 

by the simulations guide engineers and scientists in the discovery of new strategies leading to quieter 

drone configurations. A common approach relies on high-fidelity computational fluid dynamics 

(CFD) techniques coupled with solutions of Ffowcs Williams-Hawkings’ (FW-H) analogy [6] for 

permeable or solid boundaries [7]. Such a  deterministic approach usually requires an apriori 

knowledge of the parameter’s values at initial conditions, i.e. rotation speed of each rotor, crosswind, 

pitch angle of the blades’ propeller, etc. Remarkable demonstrations can be found in the literature for 

drone noise predictions [8] or general multi-propeller aircraft noise calculations [9] requiring 8 × 105 

and 2.5 × 105 CPU-hours respectively. In real-world situations, initial conditions may vary over a 

range or its value is simply unknown. Such a situation renders difficult the task of addressing drone 

(or in general multi-propeller aircraft) noise using a deterministic approach given the cost of the state-

of-the-art computational techniques. This is especially the case for low-cost drones in which the mar-

ket revenue, the ephemeral product life cycle, and economical components, do not simply justify such 

an investment.  

 

The present work addresses the noise prediction of drones from a statistical perspective. The statisti-

cal approach used relies on a combination of CFD, CAA (Computational AeroAcoustics) and ma-

chine learning techniques to deal with uncertainties or variations of propeller’s rotation speeds. Be-

sides the expected increase of overall noise for higher rotational speeds, the acoustic signature can 

also change, shifting the tonal and broadband noise components towards high (or low) frequencies. 

This represents an additional constraint to the present methodology.  

 

This study starts with quantitative and qualitative analyses of the experimental data (section 2) re-

vealing uncertainties at the drone conditions. Then, a machine learning strategy is presented in section 

3, followed by the description of CFD (section 4.2) and CAA (section 4.3) techniques. With the data 

produced by the CFD/CAA processes, a hyper-parameter analysis is performed to determine the best 

machine learning model (section 5). The best predictor model is presented in the context of fulfilling 

two goals: real-time noise prediction of drone systems and determination of rotation speed(s) leading 

to a noise prediction matching experimental data. Finally, the results are discussed and analyzed (sec-

tion 6) followed by concluding remarks and possible further investigations (section 7). 

 

2.    ANALYSIS OF EXPERIMENTAL DATA 

The drone used for the measurements is a low-cost (~70$ - May 2021) quadcopter/double propeller 

LHI-QAV250 model, very popular among drone enthusiasts. The dimensions of the drone model are 

depicted in Figure 1a. In the measurements, the drone was attached to a fixed platform at 1.97 m 

from the floor and 8 measurement points were defined at iso-radius (R = 0.6 m) from the drone’s 

centre of gravity. The measurements were performed on the semi-anechoic chamber facilities at Ho-

sei University Urban Air Mobility Laboratory using a RION NL-31 sound level meter [10]. 

 

Usually, low-cost drones are equipped with brushless DC motors with no feedback control to deter-

mine the rotation speed. For this reason, the rotation speed is established by the supplied power and 

then measured using an optical tachometer. Ten different power supplies are considered from 10% to 

100% of the maximum power capacity of the battery. Such different power supplies lead to measured 

rotation speeds in RPM (Revolution Per Minute) from 2372 to 18303. For better referencing, the 

propellers were tagged as (Figure 1b): upper-right (UR - red), upper-left (UL - green), lower-left (LL 

- blue), and lower-right (LR - yellow). The direction of rotation for each propeller is indicated as well 



in Figure 1a. Finally, the sound measured was obtained in two different formats, namely spectrum in 

dBA and as a sound file (*.wav).  

 

 
Figure 1: Drone configuration used in measurements and calculations. (a) Dimensions and 

directions of rotation; (b) Relative position of the microphones (sub-figure not in scale). 

 

Prior to the CFD and CAA calculations, the sound files and the experimental data are analyzed to 

detect possible anomalies. For instance, for points 1 and 5, an audio inspection revealed a significant 

blow sound, probably induced by the drone’s flow stream at the discharge (point 1) and suction (point 

5) sides. This can be observed in the spectrum for point 1 (Figure 2a) and its spectrogram (Figure 2b). 

Indeed, in contrast to point 1, in point 7 (far from the flow stream), the spectrum (Figure 3a) and 

spectrogram (Figure 3b) contain well-defined peaks at the rotation speed and harmonics. For practical 

purposes, such measurement points will be not considered in the numerical comparisons. 

 

 
Figure 2: Sound analysis of the *.wav file for point 1 at 18303 RPM measured (100% power 

capacity). (a) Spectrum. (b) Spectrogram. 

Additionally, a closer observation at the spectrum peaks for point 7 (Figure 3a) reveals further 

irregularities. For instance, the first two peaks in the spectrum and spectrogram (230 𝐻𝑧 and 456 𝐻𝑧) 
may correspond to the propeller’s rotation speed and its first blade passing frequency (BPF) for a 

rotation speed around ~13800 RPM. Yet, for a rotation speed of 18303 RPM (measured), such peaks 

should be located at ~305 𝐻𝑧 and ~610 𝐻𝑧.  

 
 

 

 

 

 

 

            
    

          
              

    

           
    

 

  

   

     

           
 

  

                               

 
 
 
 
 
 
 
 
 
  
 
 
 
 

        

   

   

   

   

   

      

    

                          

                           



 
Figure 3: Same as Figure 2 but for point 7. 

Besides, another interesting phenomenon is detected by analyzing the relative peak positions in the 

spectrum. The different peaks start to separate from each other as the frequency increases. For 

instance, the frequency width of the 6th peak is around 59 Hz (1407 𝐻𝑧 − 1348 𝐻𝑧). This may be 

interpreted as a difference of around ~10 Hz at the 1st harmonic or a ~600 RPM difference between 

at least two propellers. Such irregularities may be explained by errors in the measurements of the 

optical tachometer and the difficult control of the rotation speed in low-cost drones. 

 
Figure 4: Varying spectra analysis for different power settings of the drone configuration.  

A general analysis of the 10 power settings for point 1 and point 7 is observed figure 4. For instance, 

in figure 4a, as the power increases monotonically, the maximum peaks found (i.e. possible BPF) in 

the spectra changes in a non-monotonic way. In contrast, for point 7 (figure 4b), the frequency 

detected for the highest peak (i.e. possible BPF) increases monotonically and the power setting 

increases. 

Consequently, due to the uncertainty of rotation speed values measured by the optical tachometer and 

the relative difference between the rotation speeds of any pair of propellers, a deterministic CFD and 

CAA calculation is unfeasible. Therefore, a statistical approach for noise prediction of drones using 

supervised machine learning techniques is proposed. 

 

3.    COMPUTATIONAL STRATEGY BASE ON MACHINE LEARNING 

 

In this section, a machine learning strategy is proposed using acoustics data obtained from CAA and 

CFD methods. Such a strategy is intended to determine in real-time the noise at different locations 

produced by the drone given the variation of rotation speed for each propeller. 

                               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

   

   

   

   

   

      

     

     

      

       

    

                          

                           

     

 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

  

  

   

     
     

     

      
 
 
 
 
 
 
 
 
 
 
 
 

  

  

  

  

   
     

     

     

     

     

              



 

The general strategy is depicted in Figure 5:. First, CFD calculations using a reduced quarter model 

are performed by varying the rotation speed from -40% to 0% of deviation from the reference rotation 

speed selected (18303 RPM).  The flow information for each rotation speed (i.e. velocity, pressure 

and density) is exported to be used in the computation of aeroacoustic sources. Then, the aeroacoustic 

sources are translated into frequency domain and used in the CAA solver to estimate the sound pres-

sure level up to 5 kHz using 492 discrete frequency values. It is worth noticing that, since the time 

signal of the flow variables is sufficiently long, this is divided in sub-signals to generate 7 sub-load-

cases per rotation speed deviation. Furthermore, given the 9 rotation speed deviations computed for 

the 4 propellers and 7 sub-load cases, the total amount of realizations carried by the CAA solver raises 

up to 882 data samples. In other words, the total number of load-cases were computed as 7 × C(9,4) 

= 882 where C is the combinatorial operator without repetition on the variables (RPMs). Because the 

data to be used in the machine learning procedure originates from computational physics algorithms, 

the selection of machine learning features is already determined. Indeed, the features correspond to 

the deviations of rotation speed for each propeller. 

 

 
Figure 5: Machine learning strategy in a combination of CAA and CFD simulations. 

 

The 882 data samples from the 8 virtual microphones at 492 discrete frequencies are then divided in 

two groups, i.e. test and training sets. Such information is first used in the hyperparameter tunning 

(section 5) for each regressor model selected. For the hyperparameter tuning, a random search is 

performed to determine the best optimal parameters given an error metric. Finally, two goals to 

achieved are defined using the best regressor model: (i) a graphical recombination tool is developed 

to estimate in real-time the noise at each virtual microphone for a user-defined set of rotation speeds; 

(ii) the combination of rotation speed for each propeller is estimated to minimize the error of the 

predicted spectrum with respect to the experimental data available.  

 

4.  COMPUTATIONAL AEROACOUSTICS AND FLUID DYNAMICS PROCEDURES 

4.1.    Theoretical Background 
 

Lighthill’s rearrangement of fluid dynamics equations into the form of acoustic analogy is written as 

follows [11,12]:  

                        

                      

                 
                  

                 
     

                   

                       

                   

                   

                             
                    

                    
              

                      
                       

          
                       
                 

                     
        
                                
                     
                     

                 
                  

              

                   
          



 𝜕2𝜌

𝜕𝑡2
− 𝑐0

2𝛁2𝜌 = 𝛁 ⋅ 𝛁 𝐓𝑖𝑗 , 
(1) 

the left-hand side (l.h.s) of equation (1) represents a wave equation for the density 𝜌 while the right-

hand side (r.h.s.) contains an equivalent source term where 𝐓𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗 + δ𝑖𝑗ሺ𝑝 − 𝑐0
2𝜌ሻ − 𝜏𝑖𝑗 is commonly 

referred as Lighthill’s tensor. Furthermore, 𝑢𝑖, 𝑝, 𝑐0 and 𝜏𝑖𝑗 are the fluid velocity, pressure, speed of 

sound and viscous tensor respectively, while δ𝑖𝑗 is the Kronecker delta. Assuming constant speed of 

sound 𝑐0, a variational formulation [13] is derived by multiplying equation (1) by a test function 𝜌∗ 
and integrating over a region Ω as follows:  

 
න
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Ω
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Ω
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Ω

. 
(2) 

With 𝛁 ⋅ ሺ𝑓𝒈ሻ = 𝑓 𝛁 ⋅ 𝒈 +  𝒈 ⋅ 𝛁𝑓, the spatial derivative can be transferred to the test function 𝜌∗ 
leading to:  
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(3) 

Using Gauss’s theorem, i.e. ׬ 𝛁 ⋅ 𝒈 𝑑Ω
Ω

= ׯ 𝒈 ⋅ 𝐧 𝑑Γ 
Γ

, the last terms at both sides of equation (3) are re-

written as surface integrals and regrouped, therefore:  

 
න
𝜕2𝜌

𝜕𝑡2
𝜌∗𝑑Ω

Ω

+ 𝑐0
2න𝛁𝜌∗ ⋅ 𝛁𝜌 𝑑Ω
Ω

 = −න  𝛁 ⋅ 𝐓𝑖𝑗 ⋅ 𝛁𝜌
∗ 𝑑Ω

Ω

 + ර𝜌∗൫𝛁 ⋅ 𝐓𝑖𝑗 + 𝑐0
2𝛁𝜌൯ ⋅ 𝐧 𝑑Γ,

Γ

 
(4) 

part of integrant in the surface integral of equation (4), i.e. 𝛁 ⋅ 𝐓𝑖𝑗 + 𝑐0
2𝛁𝜌 may be expressed as 𝛁 ⋅

൫𝜌𝑢𝑖𝑢𝑖 + δ𝑖𝑗𝑝 − 𝜏𝑖𝑗൯ = −∂ሺ𝜌𝑢iሻ/ ∂t corresponding to the time derivate of the momentum 𝜌𝑢𝑖. Therefore, 

equation (4) is finally expressed as: 
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(5) 

The variational formulation of Lighthill’s analogy contains two terms, a volume term referred as 

Lighthill Volume and a surface term or Lighthill Surface. This variational formulation is useful in the 

context of finite element method (FEM) and CAA. For instance, the volume integral only requires 

first spatial derivatives from the flow solution, convenient for standard low spatial order CFD 

techniques. Besides, the surface integral only requires first-order time derivatives of the flow 

information, straightforward in the frequency domain. Furthermore, such a surface integral vanishes: 

(i) at the solid walls (𝒖.𝒏 =  0) coinciding with the natural rigid wall conditions for acoustics in 

FEM or non-slip wall condition in CFD; and (ii) in the far field where sources from turbulence are 

inexistent.  

 

Figure 6: Examples of bounded physical domains. (a) With and (b) without a propeller region. 

For instance, considering a bounded computational domain depicted in Figure 6a. According to the 

variational formulation expressed in equation (5): (i) Lighthill Volume terms are present on 𝛺1 

and 𝛺2 regions; (ii) Lighthill Surface terms vanish at the external boundary 𝛤1, the solid wall 𝛤𝑤,  and 
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at the moving wall 𝛤𝑝with respect to the moving frame of reference; and (iii) do not exist on the 

contour boundary 𝛤2because 𝛺1 and 𝛺2 regions are continous. An alternative modelling approach is 

presented in Figure 6b in which the rotating region 𝛺2 is removed. In this case, a surface source or 

Lighthill Surface appears due to the spatial truncation. This second approach has some advantages: 

(i) simplifies the modelling by removing the moving parts (propeller), especially for acoustics FEM 

in frequency domain; (ii) can be arbitrarily placed near the rotating bodies; and (iii) relies on correct 

flow information, i.e. acoustics and hydrodynamics must be carried by the CFD technique up to such 

a surface. The latter condition is usually fulfilled because meshes near rotating walls or inside rotating 

domains need to be sufficiently refined for numerical stability reasons. Such a variational concept, 

here referred as Lighthill Surface, will be used in a combination with high-fidelity CFD data to model 

the presence of drone’s propellers to later determine their characteristic acoustic signature in near and 

far field conditions. 

 

4.2.    Computational Fluid Dynamics Simulations 

 
The CFD simulation is performed using scFLOW v2021 [17] solver. Calculations were performed 

on two configurations, a full 3D model with four propellers and a quarter model with one propeller 

and two symmetry boundary conditions. The computational domain is represented by a volume of 

dimensions 2.8 m × 2.8 m ×  3.1 m with two main boundary conditions at its sides: a stress-free on 

the top and bottom sides and outlet boundary conditions (pressure outlet) at the other sides. Besides, 

for modelling the propellers, four rotating domains are placed in connection with the static domains 

by using sliding meshes. Inside each rotating domain, the blade surfaces are modelled as non-slip 

boundary walls in the rotating frame of reference. 

 
Figure 7: (a) Detail of the CFD mesh. (b) Instantaneous norm of the velocity and Q-criterion at 

t=0.015817s. 

The fluid is air at 20°C with constant density 𝜌0 = 1.205 kg/m
3, speed of sound 𝑐0 = 343.6 m/s 

and dynamic viscosity μ = 1.83 × 10−5Pa. s. An incompressible pressure-based LES solver with 

WALE (Wall-Adapting Local Eddy-Viscosity) sub-grid scale turbulence model was used with a time 

step of Δ𝑡 = 2.2765 × 10−6 s. The solution of an equivalent steady RANS calculation is set as initial 

condition for the LES simulation. The mesh for the full model ( Figure 7a) consists of 2.7 × 106 

polyhedral and hexahedral (voxel) cells while for the quarter model, the mesh contains around 

7.0 × 105 cells. In Figure 7b, the instantaneous flow solution for the full propeller configuration with 

18303 RPM for each propeller is presented. 

 

As a first step, since the rotation speed of each propeller is unknown, the quarter model is validated 

to reduce the computational cost of the CFD simulation. Indeed, because the quarter model contains 

significantly less cells than the full model, its computational cost (~1163 CPU-hours) is reduced 

(~7550 CPU-hours for full model). In Figure 8a, the instantaneous lift computed from the full model 

(black line) and four times the lift from the quarter model (red line) are depicted. The lifts computed 

              

   
                 

                                     
      



are very similar, the average lift difference between the full model (~10.67 N) and the quarter model 

(~10.71 N) is not greater than 0.37%. Furthermore, the lift spectra (Figure 8b) allow observing further 

similarities in the frequency content between both CFD models. Given such similarities and lower 

computational cost, a more refined quarter model (1.1 × 106cells , ~3160 CPU-hours) is used in the 

aeroacoustic computations with 9 rotation speeds varying from -40% to 0% from the reference value 

(i.e. 18303 RPM). Such simulations are performed for 105 time steps or 87 propeller rotations) dis-

carding the first 8 rotations to ensure capturing the physics in the established regime. For all the CFD 

computations a cluster architecture composed of Intel Xeon Gold 6140 @ 2.3 GHz processors was 

used. 

 
Figure 8: Instantaneous lift using the full CFD model (black line) and the quarter model (red line). 

(b) time evolution between the 30th and 32nd rotation of the propellers. (b) spectra for the 

instantaneous lifts. 

 

4.3.    Computational AeroAcoustic Simulations  

 

The acoustic propagation of aerodynamic sources generated by the four propellers is now addressed. 

The drone is immersed in a fluid at rest placed in a semi-anechoic space. To model the ground effects, 

mirror virtual microphones are considered. The fluid media for the propagation of the acoustic waves 

is assumed homogeneous with constant mass density and speed of sound (same as in the CFD model). 

The acoustic solution is computed using Actran [16] by solving the variational FEM formulation of 

Lighthill’s analogy (section 4.1) in the frequency domain. 

 

 
Figure 9: CAA models and results. (a) numerical mesh and components used in Actran simulation. 

(b) Acoustic validation of the full model CFD data vs. 1/4 CFD data at microphone 7 at different 

propellers speeds. 

A unique acoustic model for the full drone is used (Figure 9a). The aerodynamic sources propagating 

into the acoustic component and surrounding each propeller are modelled using four Lighthill 

Surfaces (in red, Figure 9a). The acoustic component (in blue, Figure 9a) is enclosed by infinite 

      

      

                 

                  

                  

                

                

                

                



elements [14] (in yellow, Figure 9a, with order ≥10) acting as a non-reflecting boundary condition 

and also serving to calculate the wave solution in the far field. The model is valid up to a 

computational frequency of 5kHz.  The mesh is composed by 4.12 × 105  nodes and 2.48 × 105 

elements leading to 5.09 × 105 degrees of freedom. The computation is carried out by Actran 2021 

using the MUMPS in-core solver with 4 processes and 4 threads per process (Intel(R) Xeon(R) CPU 

E5-2697 v4 @ 2.30GHz). The computation time per frequency is around 1min 25s and the maximum 

consumed RAM per process reaches 36 GB leading to a total computational cost around ~185 CPU-

hours for the total 492 frequencies. 

 
Figure 10: Pressure maps in dBA for 610.1 Hz (BPF) and 5000Hz. The four propellers rotate at 

18303 RPM. 

Similar to section 4.2, the validation the quarter model with respect to the full CFD model is per-

formed but now with acoustical relevant metrics. In Figure 9, two acoustic computations are com-

pared for point 7: (i) in black, an acoustic computation using a full CFD model with asymmetry in 

the rotation speed of the propellers as: +5% for UR (17383 RPM), 0% for UL (18303 RPM), +10% 

for LL (20133 RPM) and +5% (19218 RPM) for LR; (ii) in red, an acoustic computation using 4 

different quarter CFD models placed at each one of Lighthill Surfaces to emulate the full CFD model. 

The similarities of both curves are acceptable validating the use of a quarter model for the aeroacous-

tic computations. As an example, acoustic maps at two frequencies (610.05 Hz or BPF at 18303 

RPM) and 5kHz are depicted in Figure 10a,b. Finally, to generate the data to be used to train the 

machine learning algorithm a full 3D acoustic simulation will be used with all the permutations of 9 

rotation speeds (from -40% to 0% deviation) and four propellers. 

 

5.  SUPERVISED LEARNING AND  HYPERPARAMETER TUNNING 

 
For each virtual microphone spectrum, a prediction model is chosen among the following five regres-

sion algorithms using scikit-learn package [15]: (i) Randomized decision trees or Extra-Trees (ET); 

(ii) Random forest (RF); (iii) Gradient Boosting (GB); (iv) Adaptive Boosting (AB); and (v) Support 

Vector Machine (SVM). Such a selection is based on their popularity and common use in the litera-

ture. Furthermore, the quality of predictions of those regressors depends on two main factors, the data 

to be used to train the model (computed by CAA and CFD simulations, see sections 4.2 and 4.3) and 

a series of optimal hyperparameters specific to each regressor. To obtain such hyperparameters a k-

fold (k=5) cross-validation randomized grid search was performed.  

 

To perform the cross-validation, the numerical data was divided in two groups: (i) a training set with 

80% of the calculations; and (ii) a test set with the other 20% remaining. The hyperparameters to be 

optimized for each regressor are summarized in Table 1. The selection of the algorithm as well as the 

optimal hyperparameters is done by using the mean absolute error (MAE) as the reference metric. 

This metric is selected due to the natural way of interpreting the results of the cross-validation and 

for its suitability for regression problems. The cross-validation study is performed on point 7, which 

contains unpolluted acoustic results as explained in section 2. 

      

               

     
         

    
         



 Regressor  Hyper Parameters Grid 

Extra Trees (ET) Number of estimators: 5-2000; Max depth: 5-20; Minimum samples on leaf: 

10-100. 

Random Forest (RF) Number of estimators: 50-2000; Max depth: 5-20; Minimum samples on leaf: 

10-100. 

Gradient Boosting (GB) Number of estimators: 50-1000; Max depth: 1-20; Sub-samples: 0.1-0.95; 

Learning Rate: 0.001-0.1 log uniform distribution 

Ada Boosting (AB) Number of estimators: 50-1000; Learning Rate: 0.001-1.0, log uniform dis-

tribution 

Support Vector Machine (SVM) Regularization parameter (C): 1-1000, log uniform; Kernel coefficient 

(gamma): 0.0001-0.1, Kernel: radial basis function (rbf) and linear.  

Table 1: Hyperparameter grid for each regressor model. 

 

 
Figure 11: MAE for regressor models using the best hyperparameters at point 7. (a) MAE in test set 

[dBA] for each model chosen. (b) MAE in test and training sets for GB regressor (selected model). 

The randomized grid search allowed to determine the best regressor models (with their hyperparam-

eters) of each class given the selected error metric, i.e. MAE in dBA. The MAE obtained for each 

regressor model is plotted for point 7 in Figure 11a at each frequency. For the best regressor model 

(GB), the maximum absolute error estimated is around 1.19 dBA, quite low for acoustics comparison 

standards.  

 
Figure 12: A graphical recombination tool to generate noise results in real-time based on machine 

learning techniques. 

Furthermore, the calculation of the maximum absolute error in the test and training set (Figure 11b) 

denotes a good fit, i.e. both errors are low enough with test error slightly higher than the training 

error. This best regressor will be used in the next section for the predictions. 

 

      



6.    POSTPROCESSING AND RESULT PREDICTIONS 

Using the best regressor(s) computed in section 5, a recombination tool for rapid noise computation 

was developed as depicted in Figure 12. The machine learning objects (regressors with the best pa-

rameters) are pre-computed and stored to be later loaded in the application. Then, the user may in-

vestigate in real-time which rotation speed variation for each propeller generates any change in the 

drone’s acoustic signature at any given point. Besides, the technical analysis of classic dBA vs. fre-

quency curves, it is also possible for the user to listen to the experimental sound (from measurements) 

and to see the relative position of the measured point with respect to the drone for a better perspective. 

 
Figure 13: Prediction for power setting measured at 18303 RPM. (a) local optimal close to 

experimental values for point 7; (b) local optimal close to experimental values for point 2.  

As a second goal, the best regressor model is used to determine which variation of rotation speeds 

approaches the best to the experimental data. Such a minimization problem is addressed as follows: 

(i) first, with frequency of the highest amplitude peak from the experimental data (BPF), the expected 

rotation speed is computed; (ii) using such a value as numerical seed, a grid search around -5% and 

+5% of deviation is performed; (iii) the deviation values leading to a local minimum between the 

experimental data and predicted spectrum are selected. In addition, the choice of a grid search method 

is preferred rather than classic minimization algorithms (i.e. gradient descent) because the derivative 

of the regression functions is not guaranteed to be continuous. Due to physical space in the present 

publication, only the experimental values corresponding to the highest power supply (measured 

~18303 RPM) are presented. In Figure 13a, the numerical prediction and experiments are presented 

for point 7 for the optimal rotation speeds. It can be observed that, the predictions reconstructed with 

the regression algorithm match well the experimental data, i.e. several peak’s amplitudes are retrieved 

(including the first two peaks) and general the trend is obtained in the whole frequency range. In 

addition, it is worth noticing that the prediction model can retrieve the first peak around the rotation 

speeds. Such a peak emerges due to acoustic interactions of propellers at slight deviations in the 

rotation speeds. Furthermore, as shown in Figure 13b, the prediction and experiments are compared 

for point 2. In this comparison, the results match in the frequency prediction of the two first peaks 

(rotation speed and 1st BPF), however the broadband trend of the predictions values diverges from 

the experimental results. One explanation of this is the lack of sufficient broadband noise computed 

in the CAA+CFD step, usually improved as the CFD mesh size decreases. 

 

7.    CONCLUSIONS 

A combined CAA, CFD and machine learning methodology was proposed to address drone noise 

calculations given the uncertainties of the rotation speed values. Such uncertainties are common in 

real-world conditions for low-cost drone systems. Indeed, a deterministic approach would be unfea-

sible in such configurations because it may lead to a large combination of cases to be computed. The 

methodology relies on high-fidelity CFD solutions to be later used to compute aeroacoustic sources 

being propagated by a CAA-FEM solver in frequency domain. The acoustic solution is then treated 

      

          
           

          

            

         

           

          
           

          
           

          
          

         

           

          
           



as input data to train the machine learning models (regressors) for further predictions. Besides, the 

best selected regressors in combination with a visual application allow a real-time results reconstruc-

tion given the values of rotation speeds for each propeller. Such a rapid recombination has proven to 

be very useful to understand the behavior of a physical system subjected to a change of input condi-

tions. Furthermore, using the best predictor, the optimal rotation speed values of each propeller was 

estimated so that minimizes the absolute error with respect to the experimental data. Finally, future 

works include: (i) to generate sounds (e.g. *.wav files) from the acoustic predictions and maps to 

visualize the propagation in real-time; (ii) to include other effects of such as pitch variation of blades, 

installation effects, cross-wind, etc; and (iii) apply the methodology to other multi-propeller aircrafts 

configurations, e.g. passenger drones, fixed-wing aircrafts with disturbed propulsion, among others. 
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