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Abstract

ncapsulation of electric powertrains is a booming topic

with the electrification of vehicles. It is an efficient way

of reducing noise radiated by the machines even in
later stages of the design and without altering the electromag-
netic performance. However, it is still difficult to define the
best possible treatment. The locations, thicknesses and
material compositions need to be optimized within given
constraints to reach maximum noise reduction while keeping
added mass and cost at minimum. In this paper, a method-
ology to design the encapsulation based on numerical vibro-
acoustic simulations is presented. In a first step, the covered
areas are identified through post-processing of a finite element
acoustic radiation model of the bare powertrain. In a second

Introduction

adiated noise reduction of powertrains is an important

topic for carmakers and suppliers involved in electric

powertrain developments. The design of the electric
powertrain is a complex task where many factors need to
be taken into account, such as mechanical and thermal perfor-
mance, integration in the vehicle, interactions with other
components, structural strength and durability, and reli-
ability, noise and vibration. All this needs to be performed
while ensuring the best possible efficiency to ensure adequate
range for the electric vehicle. This also means that different
engineering teams can be working together to achieve all of
these goals. To assess the NVH performance of the powertrain
the full powertrain design needs to be advanced enough to
create virtual or real prototypes to simulate or test. Hence it
is often the case that problems related to NVH performance
are identified in later stages of the design process when the
design cannot be changed. An efficient way to improve the
NVH performance, without affecting the functional proper-
ties of the powertrain, is by adding acoustic insulation mate-
rials, or noise control treatments, which usually consist of
multiple layers of different materials, such as porous and
solid layers.
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step, a design of experiment is performed to assess the influ-
ence of various cover parameters on the acoustic radiation
results. This second step can be hugely computationally expen-
sive as the number of required virtual experiments increases
exponentially with the number of treated regions and param-
eters for each treated region. In this chapter, we present a
physics-based reduced-order model to overcome this difficulty
and do design of experiments in a much more affordable
manner. It is then enriched with machine learning to provide
finer tuning of the treatment definition. This would allow the
final designer to iterate between treatment strategy in the
matter of seconds, paving the road for an advanced optimiza-
tion algorithm. The accuracy of the presented models
is detailed.

The regions where acoustic treatments can be applied are
usually given as constraints from the powertrain designers or
by the integrators. These parts of the exterior surface of the
powertrain are called the target regions in this paper. The
treatment must be optimized for each one of these regions,
potentially independently from each other. We can use
multiple layers, and choose from multiple material types,
properties and thicknesses for each layer. Very fast, the
number of configurations combining all those parameters
becomes so enormous that it is simply not feasible in practice.
A method for helping designers finding a good treatment
without spending weeks or months on running virtual experi-
ments would be therefore very beneficial.

In the next sections we define how such a problem can
be tackled and solved with high efficiency. This process
involves Actran, a finite element software suite for acoustic
simulations, reduced order modeling that is based on prin-
ciples of acoustic radiation physics, and machine learning to
equip the reduced order model with more flexibility. We will
show that the developed complex workflow can reduce the
simulation time for virtual experiments by several orders of
magnitude. The demonstrated model creation takes only days,
involving model preparation, runs and machine learning
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model training. Even though the model implements some
simplification on the physics-based reduced order modeling,
and includes also machine learning techniques, the achieved
accuracy remains high, with R? metrics of 0.995 for the shown
example case and virtual test data.

In the end, the model generated can provide the acoustic
treatment efficiency for any combination of acoustic treatment
parameters in a matter of seconds using a very simple and
efficient user interface.

Numerical Model of
Radiation

Acoustic radiated power of a vibrating structure could
be simply approximated based on the ERP (estimated radiated
power) value. This is air impedance times structure velocity
squared & integrated on the outer surface of the vibrating
powertrain. However, this approximation is usually not
precise enough and proper modelling of the acoustic propaga-
tion in free field is necessary. This can be achieved by finite
element numerical modeling. Fluid-structure coupling in
radiation in free field can be considered as weak: the retro-
action of the radiated pressure waves on the vibration of the
structure itself is negligible. Therefore, the vibration of the
structure can be transmitted to the surrounding air and the
acoustic wave propagation in free field can be simulated inde-
pendently. In such simulation framework, volume finite
elements model the near field, and non-reflecting boundary
conditions are applied on their outer skin. The non-reflecting
boundary conditions can be achieved by, for example, infinite
elements or perfectly matching layers [1].

Bare model

The structural finite element model of the electric powertrain
is shown in Figure 1. It will provide vibration level on its outer
skin as a boundary condition for the acoustic simulation. The
acoustic radiation finite element model is automatically
meshed and set up based on the structure model. For the

m Structure finite element model of the

electric powertrain
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current example the resulting model has a mean mesh size of
~10 mm of quadratic finite elements, the near field mesh is
half wavelength thick (based on the minimum frequency),
and infinite elements of order 10 are employed. This is the
bare model, a model without any noise control
treatments (encapsulation).

Once structure vibrations from electromagnetic forces
are obtained and output on the structure mesh, the vibration
can be automatically mapped on the acoustic model and
propagated in free field. The fluid pressure at any point of space
can be retrieved, and radiated power can also be computed.
We study the radiated noise from 900Hz to 1400Hz in this
paper to illustrate our methodology. There is no specific limi-
tation inherent to the process preventing us to apply it to
higher or lower frequency range.

Target Regions for Noise
Control Treatment

Parts of the external surface of the powertrain where acoustic
treatments can be applied are constrained by the design
(connected parts, mountings, available space in the
surrounding). In addition to these constrains, the radiation
of the powertrain without any treatments can also help us
identify promising positions for noise treatment by plotting
the acoustic intensity [W/m?] on the structural model. This
acoustic intensity plot is shown in Figure 2 at two frequencies

IGTILIEN Intensity maps at 920, 960 on top and bottom,
respectively, for illustration purpose. Based on this map and
design constraints, one can decide the regions for possible
noise control treatment application.
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for illustration purpose. Based on this and some design
constraints, we identify 4 target regions as shown in Figure 3.
These regions will be fixed, but we can decide if any placement
is applied on each region, and if so, what it should be made of.

To define our design space, we also fix the number of
layers of the treatment. In this study the noise control treat-
ment will be made of two layers, as it is very typical in these
applications: the first layer is made of a porous material and

m Target regions. Gray region is kept bare, no noise
control treatment is applied there. There are four regions which

can be treated. Violet region is region 1. Green region is region
2. Blue region is region 3. Orange region is region 4. Area of
the regions in m2: 1.370 (untreated), 0.1008 (region 1),
0.007690 (region 2), 0.009895 (region 3), 0.05526 (region 4).

the second (usually thinner) layer is of a solid, heavy material.
This is often referred to as composite trim treatment. These
two layers can be simply thought of as a spring-mass-damper
system, where stiffness and structure damping are given by
the porous material and the supported mass is the heavy
layer. This system ensures insulation & absorption effects
between the structure vibration and the imposed velocity of
the surrounding air. It is assumed these effects do not alter
notably the structure modes and the vibrations of
the powertrain.

Meshless Modelling of Noise
Control Treatments

In order to make the modelling process efficient, and save
significant amount of engineering time, a meshless representa-
tion of the composite trim is implemented [1, 2]. This allows
for quick and flexible changes of the layer thicknesses and
material properties. In practice the treatments are not contin-
uously glued to the engine, first because of this is often not
possible, and second because this would not be advantageous
from a thermal performance point of view. A small air layer
can be therefore present between the treatments and the struc-
ture, and it is important to model it in the acoustic simulation
to account for possible leakage effects.

In a first step, thin air layers are created on the target
regions, which are meshed with acoustic finite elements and
then the meshless composite trims are applied on top of them.
Then the finite element model for the acoustic radiation (both
the near field mesh and the far field mesh) is set up automati-
cally. Once such a setup is complete, it can be reused for all
the possible treatments thanks to the meshless representation:
changing the thickness of a layer of the acoustic treatment is
performed through a parameter and not the finite element
mesh. The meshless approach allows us to be flexible on the
number of layers and the layer thicknesses while keeping the
same radiation finite element model. In this study the number
of layers of the treatment is fixed to 2. If one target region is
not treated, then the meshless trim material can be defined
asair. A schematic for the model at one treated region is shown

in Figure 4.

m Modelling the noise control treatment at one target region. The meshless approach allows us to be flexible on the
number of layers and the layer thicknesses while keeping the same radiation finite element model. In this study the number of
layers of the treatment is fixed to 2. The near field mesh is created automatically, as well as the far field mesh (not shown).

Near field mesh
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DOE with Physics-Based
Reduced Order Model

Number of Simulations
Needed for a Full Factorial
Design

The goal is to be able to investigate the effect of different noise
control treatments on the radiated acoustic power. The target
regions are fixed, as well as the number of layers of the treat-
ments (2 layers). But the objective is to allow designers to select
freely the layer thicknesses and some material properties on
the target regions independently.

Let us take the following example. We would like to
change the thickness of both the porous layer and the heavy
layer, and we also want to change the porosity of the porous
layer and the density of the heavy layer. These are the target
parameters of the acoustic treatment. If we want to run a full
factorial design of experiments (DOE), with 4 values for each
of these properties, then for one target region we would have
256 samples: 4 porous thickness x 4 porous porosity x 4 heavy
layer thickness x 4 heavy layer density.

However, we have 4 target regions, and if we would like
to be able to change any of the treatment properties on these
4 regions independently, then the number of samples we need
to have is:

N =256* =4.29 billion 1)

Please note that here the number 4 in the exponential
refers to the number of treated regions. And it appears in the
exponential as we would like to treat each region indepen-
dently. If that was not the case, and we allowed the regions
having strictly the same treatment, this exponential depen-
dance of the number of samples on the number of regions
would not occur.

Even though the simulation model is highly optimized
and can be run in a few minutes on a HPC cluster node, it is
absolutely not feasible to run these many simulations to
generate the virtual samples. Even if more efficient sampling
technique is chosen, the required runs will not be decreased
by several orders of magnitude.

The motivation behind the physics-based reduced order
model (ROM), presented in this paper, is to make such DOEs
possible by populating the full design space with high accuracy
from affordable number of simulation runs.

Radiated Power Computation
from Contributions

The objective of creating a reduced order model is to recover
the total radiated power as the sum of the contributions from
the untreated (bare) part and the 4 treated regions. These
contributions, however, need to account for both main and
cross effects to be accurate. Main effect is related to the power
generated by the velocity field of a vibrating region on the
pressure field that the vibration induces, while the rest of the

structure is not vibrating. Cross effects are related to the power
radiated or absorbed by the vibration of one region A in the
pressure field already generated by another region B, while all
other regions (either A or B) of the structure are not vibrating.
This can be elegantly defined in a finite element framework
using multiple back transformations of the factorized system
matrix and assemble each contribution to recover the
full system.

The degree-of-freedom of an acoustic finite element
model is pressure, but velocity can be derived from the
pressure and one can compute the intensity purely from the
velocity field. The intensity field can then be integrated on a
closed surface to get the radiated power [3]. For the case of
two regions, this may be written as the quadratic product:
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Here rPis the total radiated power, v and ¥, are arbitrarily
chosen, constant reference values of the velocity fields of
regions 1 and 2, respectively, on the surface of radiating object.
The (radiating) velocity field v, of region 1, for example, is
v, = ¥,v,, with ¥, being a reference value. The entries of ¥ can
be chosen to be one. In this way the vibration of a region can
be deactivated by setting the corresponding entry of v to zero,
and activated by setting it back to unity. Finally, the entries
of the symmetric matrix C are the contribution terms, taking
into account the velocity field and its reference value from the
excitation, scaled with pressure-velocity conversion values,
and integrated over the surface of region. With more regions
involved the size of the matrix gets bigger and we need to make
sure to compute all the necessary main and cross contributions.

The radiated power that we can compute from the entries
of the contribution matrix Cis (and has to be) exactly the same
as the radiated power computed in a classic radiation
acoustic simulation.

Computing contributions of different regions to the
radiated power also helps us study whether applying treat-
ments on these regions can be effective. In Figure 5 the
radiated power of the bare model, without any treatments on

m Total radiated power (dashed line) versus main
contribution of the bare region (grey), region 1 (violet), region 2
(green), region 3 (blue) and region 4 (orange). DOE with
physics-based reduced order model
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the regions, are shown by the dashed line. The excitation is
the vibration of the powertrain due to given electromagnetic
forces, the same as used everywhere in this paper. There
we can also see the (main) contributions of the untreated
region, and the four target regions (without treatments) to the
radiated power. It is clear from this figure that the untreated
region radiates the most power, as it is also the largest in area.
Still, there is room for attenuating the total radiated power by
acoustic treatment application, especially on the regions 1 and
4 (violet and orange curves in Figure 5).

Physics-Based Reduced-Order
Model

The radiated power contributions can be used to estimate the
total radiated power of a powertrain covered by different treat-
ments on different regions. An approximate contribution
matrix can be compiled based on base contribution matrices.
These base contribution matrices are related to homoge-
neously treated powertrains, i.e. powertrains covered on every
region by one of the treatments form the original encapsula-
tion. Once this compilation of the estimate contribution
matrix is finished, the radiated power can be simply computed
based on the entries of the matrix. In other words, we can
efficiently approximate, based on physical principles, the
radiated power of a heterogeneously treated powertrain from
results of homogeneously treated powertrains. A schematic
for the ROM is shown in Figure 6 and illustration of the
accuracy is shown in Figure 8.

Therefore, it is enough to run simulations and generate
virtual samples for powertrains covered by the same treat-
ments at all the regions. Following our examples with 256
possible treatments on one region, it is then enough to run
only 256 simulations to populate the full factorial design
samples, as many as given by Eq. (1). It is needless to say that
reducing the number of simulation runs by 7 orders of magni-
tude in this example makes the approach extremely powerful.
It is the exponential in Eq. (1) that is eliminated by the ROM.
The more target regions we have, the more significant the
reduction is.

m A schematic of the Reduced Order Model (ROM)
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Variable and Fixed
Parameters of the Treatments

In the current study we chose the following variable param-
eters and their limit values:

* Heavy layer thickness: 1-2 mm

* Porous layer thickness: 10-25 mm

* Heavy layer density: 1400-2200 kg/m?
* Porous layer porosity: 0.75-0.85

Other parameters of the porous layer and heavy layer
such as flow resistivity, density, tortuosity, damping, Young
modulus are defined.

First, the potential attenuation of such treatment needs
to be evaluated. For this, 16 simulations, combining the
extreme values of the parameters are calculated. The same
treatments are applied at once on every target region. The
resulting curves, together with the bare result for comparison,
are shown in Figure 7. It can be seen that a few dB power
difference can be obtained with the chosen parameter ranges.
There is a significant variability in the results from different
treatments, especially between 940 and 1250 Hz and above
1340 Hz. There is also a curve (red line in the figure) that
indicates the radiated power in case the 4 target regions are
perfectly treated: no vibration is transmitted to the
surrounding air and there is perfect absorption. The gray
curves with applied treatments can get close to this perfectly
attenuated situation, especially in the frequency region below
1300 Hz. This justifies the search for an optimal
acoustic treatment.

It is worth noting that the most efficient treatment is not
always the thickest one. The porous and heavy layer composite
trim has resonant frequencies. Close to a resonant frequency,
the layout trim with thicker porous layer can be less efficient
as alayout with thinner layer. We have simulated some layout
with different layer thicknesses and with fixed material prop-
erties in a simpler model setup. We found that as the porous

IETILIEA Radiated power of the bare powertrain (dashed
green line) and powertrains with treatments of variable
parameter extremities (gray lines). The red line shows the
radiated power with the 4 target regions perfectly treated, as
the maximal achievable target.
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layer gets thicker a resonance frequency appears in the studied
frequency range, with 25 mm porous and 1 mm heavy layer,
atitisat 1070 Hz. This also makes finding the optimal acoustic
treatment challenging.

Validation of the Physics-
Based Reduced-Order Model

Demonstration of the physics-based reduced-order model is
given based one treatment with random variable parameters.
These are the following:

* Porous layer thicknesses: 22.03, 11.16, 10.06, 10.32 mm
* Heavy layer thicknesses: 1.109, 1.116, 1.0444, 1.245 mm
® Porous porosity: 0.7587, 0.7725, 0.8441, 0.8137

* Solid layer density: 2162, 1998, 2160, 1874 kg/m?

The true versus estimated results are shown in Figure 8.
The root mean squared error (RMSE) is [4]:

RMSE = Zj:(rpm’e’i - erredicted,i )2
M

=2.843¢"°  (3)

and the coefficient of determination (R?) is [4]:

Z M 2
. (rptme,i - erredicted,i)
R =1-<==
= i .
. l(rptrue,i - rpmeun )
Z i=

=0.9980 4)

Here rP,,,,; is the true (or exact) value of the radiated
power at the it" solution frequency, 7Ppredicted,i 1S the predicted
value of the radiated power at the i*" solution frequency, and
7P,,0qn 1s the mean value of the radiated power on the studied

frequency range. The solution frequency at i=1 is 900Hz, the

IETILEIEEY Radiated power from the physics-based
reduced-order model. Random layer thicknesses and material
properties were chosen for the treatments and the true
solution was estimated based on results of powertrains with
homogeneous acoustic treatments

Random test case, physics-based reduced-order model
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frequency step is 2 Hz, and the solution frequency at i=M=251
is 1400Hz. Radiated power values are substituted in Watt.

These indicators, and corresponding good correlations,
are obtained for cases where the acoustic treatments are
different on the regions (heterogeneously treated powertrain).
If the treatments are the same on all the regions, the radiated
power result from the ROM is exact.

The accuracy of the method is estimated to be sufficient
to allow its usage for defining optimal treatments. Based on
the 256 simulations (around 1h per calculation), the effect of
any treatment configuration (among 4 billion possibilities)
can be calculated in a few seconds.

Implementing Machine
Learning

Motivation in Machine
Learning Implementation

The ROM presented in the previous section is very efficient in
making DOE studies possible with an affordable number of
simulation runs. It is however still restricted to the chosen
discretization of the target parameters. So, one cannot fine
tune the acoustic treatment properties, but can only see the
effects of changing a few (4 in this example) values for each
target parameter.

Therefore, a machine learning model can be trained so
that target parameters (treatment properties such as porous
and heavy layer thicknesses, porous porosity, heavy layer
density) can take any value within the range of validity of the
model. This would also make it possible to include the model
in a constrained parameter optimization algorithm to find a
good balance between achieved noise attenuation and added
mass or cost.

Machine Learning Model
Training and Selection

The machine learning model was trained first on the 256 full
factorial samples of the design space. The following regression
models have been trained using Scikit-learn, a machine
learning library for the Python programming language [5]:

* ElasticNet (with different alpha and L1 ratios)

e Support Vector (with poly and rbf kernels, and different
regularization parameters)

* Gradient Boosting (with different learning rates and
number of estimators)

e Random Forrest (with different number of estimators,
with and without bootstrapping)

e Gaussian Process, (with radial basis function - RBF,
RationalQuadratic, and Matern kernels)

e RBF Interpolator (with linear, thin plate spline, cubic,
quintic, multiquadric, inverse multiquadric, inverse
quadratic, and gaussian kernels)
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5-fold cross validation was used to choose the best param-
eters for the models. Finally, RBF Interpolator with inverse
quadratic kernel was chosen based on its high accuracy, fast
training time and the lightweight final model.

The effect of the encapsulation is frequency dependent.
The machine learning algorithm is trained for each frequency
independently. All the calculation frequencies are considered
in this training set, no frequency interpolation or extrapola-
tion has been used.

Validation of the Machine
Learning Enriched Physics-
Based Reduced-Order Model

30 test cases have been created with randomly chosen material
properties and layer thicknesses, in the validity of the model,
different on each region, to test the performance of the whole
workflow. The root mean squared error (RMSE) and the coef-
ficient of determination (R?), averaged on the 30 test cases,
were 4.839e-6 and 0.9922, respectively.

Finally, the effect of sampling on the performance of the
trained model was also studied. The model was trained based
on 256 samples created by Latin hypercube sampling. The
selected model was RBF Interpolator with cubic kernel. (Note
that with the full factorial sampling the best model was the
RBF Interpolator with inverse quadratic kernel). The root
mean squared error (RMSE) and the coefficient of determina-
tion (R?), averaged on the 30 test cases with the newly trained
ML model, were 4.037e-6 and 0.9948, respectively. It is inter-
esting to note that the best RBF Interpolator is different when
considering two different sampling methods of the design
space. Still the differences are limited with a R? above 0.99 in
each case.

Figure 9 shows a comparison of true versus predicted
radiated power curves for the model trained on the full facto-
rial samples (top) and for the one trained with the Latin hyper-
cube samples (boot) on one of the 30 test cases to show graphi-
cally the good correlation between predicted and true solu-
tions. The radiated power of the powertrain without any noise
control treatment is also shown in the figure to show the
efficiency of the treatments.

On the computation time perspective, the physics-based
reduced-order model and machine learning can be performed
on a single (powerful) machine in around 30 hours. This really
enables this kind of methodology to product design and is not
restricted to advanced method department anymore.

Numerical Optimization
Outlook

Having a fast and reliable reduced-order model makes it
possible to do parametric optimization of the noise control
treatments. It is beyond the scope of this paper to perform
this optimization, but an outlook is given below of what could
be done as next steps.

m lllustration of radiated power prediction

accuracy on a test data with random layer thicknesses and
material properties, different on each target regions. Top:
model trained with full factorial samples. Bottom: model
trained with Latin hypercube sampling. Results without any
treatments (bare) are also shown for comparison.
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We would need to search for optimum parameters of
the treatments for each region: thicknesses of the porous
and solid layers, porosity of the porous and mass density of
the heavy layer. As the validity of the machine learning
model is bounded by the limit values of the material param-
eters, the optimization should be constrained by inequality
constrains.

The target of the optimization would be naturally the
minimization of the radiated power. As a scalar value is
usually to be optimized, a good candidate would be the
overall sound power level (OSWL). Besides, we would need
to keep an eye on the added mass (or cost) by the applied
treatment. The objective is to minimize the radiated noise
with a minimum added noise control treatment
material.

As there are 4 target regions, each having 4 variable
parameters, the constrained optimization needs to be searched
for in a 16-dimensional space. Performing a multi-objective
optimization would be preferable with a pareto front of
optimal solutions. This would very well guide the decision
making in the final treatments, to balance between the gain
(noise reduction) and cost (extra added material).
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Conclusions

In this paper a novel methodology for finding optimal noise
control treatment properties to reduce the radiated noise of
powertrains was presented. The methodology started with
finding regions of the powertrain where treatment can
be beneficial to apply. These depend both on design constraints
and a simulated intensity field (element contribution) around
the vibrating structure. Once the target regions were identi-
fied, we defined the acoustic treatment to be made of two
layers, a porous one and a heavy one, as typical in these kinds
of applications. But this is not a limitation of the method, the
number of layers can be arbitrary. Then some variable param-
eters of these layers (their thicknesses and some of their
material properties, namely the porosity of the porous layer
and the density of the heavy layer) were selected. These param-
eters were the target of the optimization. After these prelimi-
nary steps, the reduced-order model creation was discussed.
The model is not a black box data-driven model, but it is based
on physical principles. It was shown that the ROM approxi-
mates the exact radiated power solution very precisely. The
developed ROM, however, can only be used to populate a full
factorial DOE in a very efficient way. We went then further
by training a machine learning model to get rid of the limita-
tions of the coarse discretization of the parameter space of
the original resolution for the DOE. In this way a (data-driven)
ML model powered our physics-based ROM to reach a model
that can be run very fast (almost instantaneous) and can be the
bases of optimization algorithm. The results of the ML
enriched ROM were also validated against independent
numerical simulations with random variable parameters and
avery good performance was achieved. Finally, we made some
outlooks for further possible applications in the developed
reduced-order model for numerical optimization of the noise
control treatments. The presented method can be automated,

leading to an easy-to-use tool for designers to assess maximum
excepted effects of noise control treatments help them finding
an optimal setup.
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Definitions/Abbreviations

DOE - Design of experiments

FEM - Finite Element Method

HPC - High performance computing
OSWL - Overall sound power level
RBF - Radial Basis Functions

ROM - Reduced order model

RMSE - Root mean squared error

R, - Coefficient of determination
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