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Abstract

Encapsulation of electric powertrains is a booming topic 
with the electrification of vehicles. It is an efficient way 
of reducing noise radiated by the machines even in 

later stages of the design and without altering the electromag-
netic performance. However, it is still difficult to define the 
best possible treatment. The locations, thicknesses and 
material compositions need to be optimized within given 
constraints to reach maximum noise reduction while keeping 
added mass and cost at minimum. In this paper, a method-
ology to design the encapsulation based on numerical vibro-
acoustic simulations is presented. In a first step, the covered 
areas are identified through post-processing of a finite element 
acoustic radiation model of the bare powertrain. In a second 

step, a design of experiment is performed to assess the influ-
ence of various cover parameters on the acoustic radiation 
results. This second step can be hugely computationally expen-
sive as the number of required virtual experiments increases 
exponentially with the number of treated regions and param-
eters for each treated region. In this chapter, we present a 
physics-based reduced-order model to overcome this difficulty 
and do design of experiments in a much more affordable 
manner. It is then enriched with machine learning to provide 
finer tuning of the treatment definition. This would allow the 
final designer to iterate between treatment strategy in the 
matter of seconds, paving the road for an advanced optimiza-
tion algorithm. The accuracy of the presented models 
is detailed.

Introduction

Radiated noise reduction of powertrains is an important 
topic for carmakers and suppliers involved in electric 
powertrain developments. The design of the electric 

powertrain is a complex task where many factors need to 
be taken into account, such as mechanical and thermal perfor-
mance, integration in the vehicle, interactions with other 
components, structural strength and durability, and reli-
ability, noise and vibration. All this needs to be performed 
while ensuring the best possible efficiency to ensure adequate 
range for the electric vehicle. This also means that different 
engineering teams can be working together to achieve all of 
these goals. To assess the NVH performance of the powertrain 
the full powertrain design needs to be advanced enough to 
create virtual or real prototypes to simulate or test. Hence it 
is often the case that problems related to NVH performance 
are identified in later stages of the design process when the 
design cannot be changed. An efficient way to improve the 
NVH performance, without affecting the functional proper-
ties of the powertrain, is by adding acoustic insulation mate-
rials, or noise control treatments, which usually consist of 
multiple layers of different materials, such as porous and 
solid layers.

The regions where acoustic treatments can be applied are 
usually given as constraints from the powertrain designers or 
by the integrators. These parts of the exterior surface of the 
powertrain are called the target regions in this paper. The 
treatment must be optimized for each one of these regions, 
potentially independently from each other. We  can use 
multiple layers, and choose from multiple material types, 
properties and thicknesses for each layer. Very fast, the 
number of configurations combining all those parameters 
becomes so enormous that it is simply not feasible in practice. 
A method for helping designers finding a good treatment 
without spending weeks or months on running virtual experi-
ments would be therefore very beneficial.

In the next sections we define how such a problem can 
be  tackled and solved with high efficiency. This process 
involves Actran, a finite element software suite for acoustic 
simulations, reduced order modeling that is based on prin-
ciples of acoustic radiation physics, and machine learning to 
equip the reduced order model with more flexibility. We will 
show that the developed complex workflow can reduce the 
simulation time for virtual experiments by several orders of 
magnitude. The demonstrated model creation takes only days, 
involving model preparation, runs and machine learning 

Received: 21 Nov 2022	 Revised: 10 Mar 2023	 Accepted: 13 Mar 2023

Downloaded from SAE International by Athanasios Poulos,  Saturday, May 13, 2023



	 2 MACHINE-LEARNING-BASED MODELLING OF ELECTRIC POWERTRAIN NOISE CONTROL TREATMENTS

model training. Even though the model implements some 
simplification on the physics-based reduced order modeling, 
and includes also machine learning techniques, the achieved 
accuracy remains high, with R2 metrics of 0.995 for the shown 
example case and virtual test data.

In the end, the model generated can provide the acoustic 
treatment efficiency for any combination of acoustic treatment 
parameters in a matter of seconds using a very simple and 
efficient user interface.

Numerical Model of 
Radiation
Acoustic radiated power of a vibrating structure could 
be simply approximated based on the ERP (estimated radiated 
power) value. This is air impedance times structure velocity 
squared & integrated on the outer surface of the vibrating 
powertrain. However, this approximation is usually not 
precise enough and proper modelling of the acoustic propaga-
tion in free field is necessary. This can be achieved by finite 
element numerical modeling. Fluid-structure coupling in 
radiation in free field can be considered as weak: the retro-
action of the radiated pressure waves on the vibration of the 
structure itself is negligible. Therefore, the vibration of the 
structure can be transmitted to the surrounding air and the 
acoustic wave propagation in free field can be simulated inde-
pendently. In such simulation framework, volume finite 
elements model the near field, and non-reflecting boundary 
conditions are applied on their outer skin. The non-reflecting 
boundary conditions can be achieved by, for example, infinite 
elements or perfectly matching layers [1].

Bare model
The structural finite element model of the electric powertrain 
is shown in Figure 1. It will provide vibration level on its outer 
skin as a boundary condition for the acoustic simulation. The 
acoustic radiation finite element model is automatically 
meshed and set up based on the structure model. For the 

current example the resulting model has a mean mesh size of 
~10 mm of quadratic finite elements, the near field mesh is 
half wavelength thick (based on the minimum frequency), 
and infinite elements of order 10 are employed. This is the 
bare model, a model without any noise control 
treatments (encapsulation).

Once structure vibrations from electromagnetic forces 
are obtained and output on the structure mesh, the vibration 
can be  automatically mapped on the acoustic model and 
propagated in free field. The fluid pressure at any point of space 
can be retrieved, and radiated power can also be computed. 
We study the radiated noise from 900Hz to 1400Hz in this 
paper to illustrate our methodology. There is no specific limi-
tation inherent to the process preventing us to apply it to 
higher or lower frequency range.

Target Regions for Noise 
Control Treatment
Parts of the external surface of the powertrain where acoustic 
treatments can be  applied are constrained by the design 
(connected parts, mountings, available space in the 
surrounding). In addition to these constrains, the radiation 
of the powertrain without any treatments can also help us 
identify promising positions for noise treatment by plotting 
the acoustic intensity [W/m2] on the structural model. This 
acoustic intensity plot is shown in Figure 2 at two frequencies 

 FIGURE 1  Structure finite element model of the 
electric powertrain

 FIGURE 2  Intensity maps at 920, 960 on top and bottom, 
respectively, for illustration purpose. Based on this map and 
design constraints, one can decide the regions for possible 
noise control treatment application.
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for illustration purpose. Based on this and some design 
constraints, we identify 4 target regions as shown in Figure 3. 
These regions will be fixed, but we can decide if any placement 
is applied on each region, and if so, what it should be made of.

To define our design space, we also fix the number of 
layers of the treatment. In this study the noise control treat-
ment will be made of two layers, as it is very typical in these 
applications: the first layer is made of a porous material and 

the second (usually thinner) layer is of a solid, heavy material. 
This is often referred to as composite trim treatment. These 
two layers can be simply thought of as a spring-mass-damper 
system, where stiffness and structure damping are given by 
the porous material and the supported mass is the heavy 
layer. This system ensures insulation & absorption effects 
between the structure vibration and the imposed velocity of 
the surrounding air. It is assumed these effects do not alter 
notably the structure modes and the vibrations of 
the powertrain.

Meshless Modelling of Noise 
Control Treatments
In order to make the modelling process efficient, and save 
significant amount of engineering time, a meshless representa-
tion of the composite trim is implemented [1, 2]. This allows 
for quick and flexible changes of the layer thicknesses and 
material properties. In practice the treatments are not contin-
uously glued to the engine, first because of this is often not 
possible, and second because this would not be advantageous 
from a thermal performance point of view. A small air layer 
can be therefore present between the treatments and the struc-
ture, and it is important to model it in the acoustic simulation 
to account for possible leakage effects.

In a first step, thin air layers are created on the target 
regions, which are meshed with acoustic finite elements and 
then the meshless composite trims are applied on top of them. 
Then the finite element model for the acoustic radiation (both 
the near field mesh and the far field mesh) is set up automati-
cally. Once such a setup is complete, it can be reused for all 
the possible treatments thanks to the meshless representation: 
changing the thickness of a layer of the acoustic treatment is 
performed through a parameter and not the finite element 
mesh. The meshless approach allows us to be flexible on the 
number of layers and the layer thicknesses while keeping the 
same radiation finite element model. In this study the number 
of layers of the treatment is fixed to 2. If one target region is 
not treated, then the meshless trim material can be defined 
as air. A schematic for the model at one treated region is shown 
in Figure 4.

 FIGURE 3  Target regions. Gray region is kept bare, no noise 
control treatment is applied there. There are four regions which 
can be treated. Violet region is region 1. Green region is region 
2. Blue region is region 3. Orange region is region 4. Area of 
the regions in m2: 1.370 (untreated), 0.1008 (region 1), 
0.007690 (region 2), 0.009895 (region 3), 0.05526 (region 4).

 FIGURE 4  Modelling the noise control treatment at one target region. The meshless approach allows us to be flexible on the 
number of layers and the layer thicknesses while keeping the same radiation finite element model. In this study the number of 
layers of the treatment is fixed to 2. The near field mesh is created automatically, as well as the far field mesh (not shown).
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DOE with Physics-Based 
Reduced Order Model

Number of Simulations 
Needed for a Full Factorial 
Design
The goal is to be able to investigate the effect of different noise 
control treatments on the radiated acoustic power. The target 
regions are fixed, as well as the number of layers of the treat-
ments (2 layers). But the objective is to allow designers to select 
freely the layer thicknesses and some material properties on 
the target regions independently.

Let us take the following example. We would like to 
change the thickness of both the porous layer and the heavy 
layer, and we also want to change the porosity of the porous 
layer and the density of the heavy layer. These are the target 
parameters of the acoustic treatment. If we want to run a full 
factorial design of experiments (DOE), with 4 values for each 
of these properties, then for one target region we would have 
256 samples: 4 porous thickness x 4 porous porosity x 4 heavy 
layer thickness x 4 heavy layer density.

However, we have 4 target regions, and if we would like 
to be able to change any of the treatment properties on these 
4 regions independently, then the number of samples we need 
to have is:

	 N = =256 4 294 . billion 	 (1)

Please note that here the number 4 in the exponential 
refers to the number of treated regions. And it appears in the 
exponential as we would like to treat each region indepen-
dently. If that was not the case, and we allowed the regions 
having strictly the same treatment, this exponential depen-
dance of the number of samples on the number of regions 
would not occur.

Even though the simulation model is highly optimized 
and can be run in a few minutes on a HPC cluster node, it is 
absolutely not feasible to run these many simulations to 
generate the virtual samples. Even if more efficient sampling 
technique is chosen, the required runs will not be decreased 
by several orders of magnitude.

The motivation behind the physics-based reduced order 
model (ROM), presented in this paper, is to make such DOEs 
possible by populating the full design space with high accuracy 
from affordable number of simulation runs.

Radiated Power Computation 
from Contributions
The objective of creating a reduced order model is to recover 
the total radiated power as the sum of the contributions from 
the untreated (bare) part and the 4 treated regions. These 
contributions, however, need to account for both main and 
cross effects to be accurate. Main effect is related to the power 
generated by the velocity field of a vibrating region on the 
pressure field that the vibration induces, while the rest of the 

structure is not vibrating. Cross effects are related to the power 
radiated or absorbed by the vibration of one region A in the 
pressure field already generated by another region B, while all 
other regions (either A or B) of the structure are not vibrating. 
This can be elegantly defined in a finite element framework 
using multiple back transformations of the factorized system 
matrix and assemble each contribution to recover the 
full system.

The degree-of-freedom of an acoustic finite element 
model is pressure, but velocity can be  derived from the 
pressure and one can compute the intensity purely from the 
velocity field. The intensity field can then be integrated on a 
closed surface to get the radiated power [3]. For the case of 
two regions, this may be written as the quadratic product:
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Here rP is the total radiated power, �v1 and �v2 are arbitrarily 
chosen, constant reference values of the velocity fields of 
regions 1 and 2, respectively, on the surface of radiating object. 
The (radiating) velocity field v1 of region 1, for example, is 
v v1 1 1= �v s , with �v1 being a reference value. The entries of �v  can 
be chosen to be one. In this way the vibration of a region can 
be deactivated by setting the corresponding entry of  �v  to zero, 
and activated by setting it back to unity. Finally, the entries 
of the symmetric matrix C are the contribution terms, taking 
into account the velocity field and its reference value from the 
excitation, scaled with pressure-velocity conversion values, 
and integrated over the surface of region. With more regions 
involved the size of the matrix gets bigger and we need to make 
sure to compute all the necessary main and cross contributions.

The radiated power that we can compute from the entries 
of the contribution matrix C is (and has to be) exactly the same 
as the radiated power computed in a classic radiation 
acoustic simulation.

Computing contributions of different regions to the 
radiated power also helps us study whether applying treat-
ments on these regions can be  effective. In Figure 5 the 
radiated power of the bare model, without any treatments on 

 FIGURE 5  Total radiated power (dashed line) versus main 
contribution of the bare region (grey), region 1 (violet), region 2 
(green), region 3 (blue) and region 4 (orange). DOE with 
physics-based reduced order model
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the regions, are shown by the dashed line. The excitation is 
the vibration of the powertrain due to given electromagnetic 
forces, the same as used everywhere in this paper. There 
we can also see the (main) contributions of the untreated 
region, and the four target regions (without treatments) to the 
radiated power. It is clear from this figure that the untreated 
region radiates the most power, as it is also the largest in area. 
Still, there is room for attenuating the total radiated power by 
acoustic treatment application, especially on the regions 1 and 
4 (violet and orange curves in Figure 5).

Physics-Based Reduced-Order 
Model
The radiated power contributions can be used to estimate the 
total radiated power of a powertrain covered by different treat-
ments on different regions. An approximate contribution 
matrix can be compiled based on base contribution matrices. 
These base contribution matrices are related to homoge-
neously treated powertrains, i.e. powertrains covered on every 
region by one of the treatments form the original encapsula-
tion. Once this compilation of the estimate contribution 
matrix is finished, the radiated power can be simply computed 
based on the entries of the matrix. In other words, we can 
efficiently approximate, based on physical principles, the 
radiated power of a heterogeneously treated powertrain from 
results of homogeneously treated powertrains. A schematic 
for the ROM is shown in Figure 6 and illustration of the 
accuracy is shown in Figure 8.

Therefore, it is enough to run simulations and generate 
virtual samples for powertrains covered by the same treat-
ments at all the regions. Following our examples with 256 
possible treatments on one region, it is then enough to run 
only 256 simulations to populate the full factorial design 
samples, as many as given by Eq. (1). It is needless to say that 
reducing the number of simulation runs by 7 orders of magni-
tude in this example makes the approach extremely powerful. 
It is the exponential in Eq. (1) that is eliminated by the ROM. 
The more target regions we have, the more significant the 
reduction is.

Variable and Fixed 
Parameters of the Treatments
In the current study we chose the following variable param-
eters and their limit values:

•• Heavy layer thickness: 1-2 mm

•• Porous layer thickness: 10-25 mm

•• Heavy layer density: 1400-2200 kg/m3

•• Porous layer porosity: 0.75-0.85

Other parameters of the porous layer and heavy layer 
such as flow resistivity, density, tortuosity, damping, Young 
modulus are defined.

First, the potential attenuation of such treatment needs 
to be  evaluated. For this, 16 simulations, combining the 
extreme values of the parameters are calculated. The same 
treatments are applied at once on every target region. The 
resulting curves, together with the bare result for comparison, 
are shown in Figure 7. It can be seen that a few dB power 
difference can be obtained with the chosen parameter ranges. 
There is a significant variability in the results from different 
treatments, especially between 940 and 1250 Hz and above 
1340 Hz. There is also a curve (red line in the figure) that 
indicates the radiated power in case the 4 target regions are 
perfectly treated: no vibration is transmitted to the 
surrounding air and there is perfect absorption. The gray 
curves with applied treatments can get close to this perfectly 
attenuated situation, especially in the frequency region below 
1300  Hz. This justif ies the search for an optimal 
acoustic treatment.

It is worth noting that the most efficient treatment is not 
always the thickest one. The porous and heavy layer composite 
trim has resonant frequencies. Close to a resonant frequency, 
the layout trim with thicker porous layer can be less efficient 
as a layout with thinner layer. We have simulated some layout 
with different layer thicknesses and with fixed material prop-
erties in a simpler model setup. We found that as the porous 

 FIGURE 6  A schematic of the Reduced Order Model (ROM)

 FIGURE 7  Radiated power of the bare powertrain (dashed 
green line) and powertrains with treatments of variable 
parameter extremities (gray lines). The red line shows the 
radiated power with the 4 target regions perfectly treated, as 
the maximal achievable target.
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layer gets thicker a resonance frequency appears in the studied 
frequency range, with 25 mm porous and 1 mm heavy layer, 
at it is at 1070 Hz. This also makes finding the optimal acoustic 
treatment challenging.

Validation of the Physics-
Based Reduced-Order Model
Demonstration of the physics-based reduced-order model is 
given based one treatment with random variable parameters. 
These are the following:

•• Porous layer thicknesses: 22.03, 11.16, 10.06, 10.32 mm

•• Heavy layer thicknesses: 1.109, 1.116, 1.0444, 1.245 mm

•• Porous porosity: 0.7587, 0.7725, 0.8441, 0.8137

•• Solid layer density: 2162, 1998, 2160, 1874 kg/m3

The true versus estimated results are shown in Figure 8. 
The root mean squared error (RMSE) is [4]:

	 RMSE
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M
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and the coefficient of determination (R2) is [4]:
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Here rPtrue,i is the true (or exact) value of the radiated 
power at the ith solution frequency, rPpredicted,i is the predicted 
value of the radiated power at the ith solution frequency, and 
rPmean is the mean value of the radiated power on the studied 
frequency range. The solution frequency at i=1 is 900Hz, the 

frequency step is 2 Hz, and the solution frequency at i=M=251 
is 1400Hz. Radiated power values are substituted in Watt.

These indicators, and corresponding good correlations, 
are obtained for cases where the acoustic treatments are 
different on the regions (heterogeneously treated powertrain). 
If the treatments are the same on all the regions, the radiated 
power result from the ROM is exact.

The accuracy of the method is estimated to be sufficient 
to allow its usage for defining optimal treatments. Based on 
the 256 simulations (around 1h per calculation), the effect of 
any treatment configuration (among 4 billion possibilities) 
can be calculated in a few seconds.

Implementing Machine 
Learning

Motivation in Machine 
Learning Implementation
The ROM presented in the previous section is very efficient in 
making DOE studies possible with an affordable number of 
simulation runs. It is however still restricted to the chosen 
discretization of the target parameters. So, one cannot fine 
tune the acoustic treatment properties, but can only see the 
effects of changing a few (4 in this example) values for each 
target parameter.

Therefore, a machine learning model can be trained so 
that target parameters (treatment properties such as porous 
and heavy layer thicknesses, porous porosity, heavy layer 
density) can take any value within the range of validity of the 
model. This would also make it possible to include the model 
in a constrained parameter optimization algorithm to find a 
good balance between achieved noise attenuation and added 
mass or cost.

Machine Learning Model 
Training and Selection
The machine learning model was trained first on the 256 full 
factorial samples of the design space. The following regression 
models have been trained using Scikit-learn, a machine 
learning library for the Python programming language [5]:

•• ElasticNet (with different alpha and L1 ratios)

•• Support Vector (with poly and rbf kernels, and different 
regularization parameters)

•• Gradient Boosting (with different learning rates and 
number of estimators)

•• Random Forrest (with different number of estimators, 
with and without bootstrapping)

•• Gaussian Process, (with radial basis function - RBF, 
RationalQuadratic, and Matern kernels)

•• RBF Interpolator (with linear, thin plate spline, cubic, 
quintic, multiquadric, inverse multiquadric, inverse 
quadratic, and gaussian kernels)

 FIGURE 8  Radiated power from the physics-based 
reduced-order model. Random layer thicknesses and material 
properties were chosen for the treatments and the true 
solution was estimated based on results of powertrains with 
homogeneous acoustic treatments
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5-fold cross validation was used to choose the best param-
eters for the models. Finally, RBF Interpolator with inverse 
quadratic kernel was chosen based on its high accuracy, fast 
training time and the lightweight final model.

The effect of the encapsulation is frequency dependent. 
The machine learning algorithm is trained for each frequency 
independently. All the calculation frequencies are considered 
in this training set, no frequency interpolation or extrapola-
tion has been used.

Validation of the Machine 
Learning Enriched Physics-
Based Reduced-Order Model
30 test cases have been created with randomly chosen material 
properties and layer thicknesses, in the validity of the model, 
different on each region, to test the performance of the whole 
workflow. The root mean squared error (RMSE) and the coef-
ficient of determination (R2), averaged on the 30 test cases, 
were 4.839e-6 and 0.9922, respectively.

Finally, the effect of sampling on the performance of the 
trained model was also studied. The model was trained based 
on 256 samples created by Latin hypercube sampling. The 
selected model was RBF Interpolator with cubic kernel. (Note 
that with the full factorial sampling the best model was the 
RBF Interpolator with inverse quadratic kernel). The root 
mean squared error (RMSE) and the coefficient of determina-
tion (R2), averaged on the 30 test cases with the newly trained 
ML model, were 4.037e-6 and 0.9948, respectively. It is inter-
esting to note that the best RBF Interpolator is different when 
considering two different sampling methods of the design 
space. Still the differences are limited with a R2 above 0.99 in 
each case.

Figure 9 shows a comparison of true versus predicted 
radiated power curves for the model trained on the full facto-
rial samples (top) and for the one trained with the Latin hyper-
cube samples (boot) on one of the 30 test cases to show graphi-
cally the good correlation between predicted and true solu-
tions. The radiated power of the powertrain without any noise 
control treatment is also shown in the figure to show the 
efficiency of the treatments.

On the computation time perspective, the physics-based 
reduced-order model and machine learning can be performed 
on a single (powerful) machine in around 30 hours. This really 
enables this kind of methodology to product design and is not 
restricted to advanced method department anymore.

Numerical Optimization 
Outlook
Having a fast and reliable reduced-order model makes it 
possible to do parametric optimization of the noise control 
treatments. It is beyond the scope of this paper to perform 
this optimization, but an outlook is given below of what could 
be done as next steps.

We would need to search for optimum parameters of 
the treatments for each region: thicknesses of the porous 
and solid layers, porosity of the porous and mass density of 
the heavy layer. As the validity of the machine learning 
model is bounded by the limit values of the material param-
eters, the optimization should be constrained by inequality  
constrains.

The target of the optimization would be naturally the 
minimization of the radiated power. As a scalar value is 
usually to be optimized, a good candidate would be the 
overall sound power level (OSWL). Besides, we would need 
to keep an eye on the added mass (or cost) by the applied 
treatment. The objective is to minimize the radiated noise 
with a minimum added noise control treatment  
material.

As there are 4 target regions, each having 4 variable 
parameters, the constrained optimization needs to be searched 
for in a 16-dimensional space. Performing a multi-objective 
optimization would be  preferable with a pareto front of 
optimal solutions. This would very well guide the decision 
making in the final treatments, to balance between the gain 
(noise reduction) and cost (extra added material).

 FIGURE 9  Illustration of radiated power prediction 
accuracy on a test data with random layer thicknesses and 
material properties, different on each target regions. Top: 
model trained with full factorial samples. Bottom: model 
trained with Latin hypercube sampling. Results without any 
treatments (bare) are also shown for comparison.
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Conclusions
In this paper a novel methodology for finding optimal noise 
control treatment properties to reduce the radiated noise of 
powertrains was presented. The methodology started with 
finding regions of the powertrain where treatment can 
be beneficial to apply. These depend both on design constraints 
and a simulated intensity field (element contribution) around 
the vibrating structure. Once the target regions were identi-
fied, we defined the acoustic treatment to be made of two 
layers, a porous one and a heavy one, as typical in these kinds 
of applications. But this is not a limitation of the method, the 
number of layers can be arbitrary. Then some variable param-
eters of these layers (their thicknesses and some of their 
material properties, namely the porosity of the porous layer 
and the density of the heavy layer) were selected. These param-
eters were the target of the optimization. After these prelimi-
nary steps, the reduced-order model creation was discussed. 
The model is not a black box data-driven model, but it is based 
on physical principles. It was shown that the ROM approxi-
mates the exact radiated power solution very precisely. The 
developed ROM, however, can only be used to populate a full 
factorial DOE in a very efficient way. We went then further 
by training a machine learning model to get rid of the limita-
tions of the coarse discretization of the parameter space of 
the original resolution for the DOE. In this way a (data-driven) 
ML model powered our physics-based ROM to reach a model 
that can be run very fast (almost instantaneous) and can be the 
bases of optimization algorithm. The results of the ML 
enriched ROM were also validated against independent 
numerical simulations with random variable parameters and 
a very good performance was achieved. Finally, we made some 
outlooks for further possible applications in the developed 
reduced-order model for numerical optimization of the noise 
control treatments. The presented method can be automated, 

leading to an easy-to-use tool for designers to assess maximum 
excepted effects of noise control treatments help them finding 
an optimal setup.
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Definitions/Abbreviations
DOE - Design of experiments
FEM - Finite Element Method
HPC - High performance computing
OSWL - Overall sound power level
RBF - Radial Basis Functions
ROM - Reduced order model
RMSE - Root mean squared error
R2 - Coefficient of determination
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