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Summary

A recently developed strategy for Robust Design Optimization (RDO), i.e. optimization under uncertainties while reducing
the variability of the system output with respect to the input uncertainties is applied to a turbocharger impeller. The RDO strategy
relies on the non-intrusive probabilistic collocation method for the propagation of uncertainties and a global surrogate assisted
optimization strategy, where a mixed Design of Experiments (DoE) is built. This mixed DoE comprises both design variables
and uncertainties as individual dimensions. A recent application of this RDO strategy to an axial compressor blade showed that
a multi-point formulation is of foremost importance for an industrial application of robust design optimization, since otherwise
off-design points become less robust. The turbocharger impeller was studied in a previous work using a deterministic multi-
disciplinary multi-point strategy. In the current work a robust design optimization formulation is set-up and applied to the
turbocharger impeller. Given that the investigated turbocharger compressor has an active self-recirculation casing treatment
design, the multi-point optimization problem combines three operating points on two different speed lines: One operating point
close to choke and one close to stall conditions on the higher speed line and one operating point close to stall conditions on the
lower speed line. The multi-disciplinary formulation comes from the calculation of mechanical stresses of the various designs.
The importance and benefits of the robust design optimization formulation are shown in comparison with the deterministic
optimization of the same geometry.

Keywords: optimization under uncertainty, uncertainty quantification, robust design optimization, automotive centrifugal
compressor.

(AutoGrid5™), parametric modelling (AutoBlade™), and
1 Introduction flow solver (FINE™/Turbo). In the following the general
principle of the deterministic optimization chain as well as its

The design of turbomachinery blades is a highly complex individual components are described.

and multidisciplinary task. Automotive turbochargers for
example face the challenge of heavy exhaust gas recirculation, 2.1. General principle
which is needed to meet stringent emission regulations and to
reach fuel efficient engines. These challenges are addressed
nowadays by means of virtual prototyping. This involves
various disciplines such as Computational Fluid Dynamics
(CFD) or Computational Structural Mechanics (CSM).
However, the design process is still overwhelmingly
deterministic, neglecting the influences of uncertainties. At the
same time uncertainties resulting from manufacturing or
assembly variability or varying operating conditions can have
a significant influences on the performance stability. It is thus
the goal of robust design optimization to aim at an improved
performance but at the same time to guarantee a stable
performance if the geometry deviates from the design
geometry or operating conditions deviate from the nominal
flow conditions. These aspects need to be included in the future
design process in order to provide a range of confidence with
the simulation results. In this work, such a robust design
optimization is applied to an automotive turbocharger, which
relies on exhaust gas recirculation.

The general principle of FINE™/Design3D relies on four
main building blocks. First, a parametric modeler that allows
to re-engineer turbomachinery geometries and consequently
modify the geometries by changing the values of the design
parameters used. In this work the in-house AutoBlade™
modeler is used, but any external modeler can be coupled into
the optimization chain. Based on the parametric model a
Design of Experiment (DoE) is built with the goal to sample
the n-dimensional design space, where n is the number of
design variables. Each sample in the DoE represents a full 3D
CFD-CSM simulation. These samples are used to build an
approximate solution, a so-called surrogate model, spanning
over the entire design space by “interpolating” the system
response between the sample points. This allows to perform the
optimization on the surrogate model instead of having to run
full 3D CFD-CSM simulations for every optimization sample.
The optimization strategy is global in the sense that the
optimizer searches for an optimal configuration everywhere in
the design space. To this end a Genetic Algorithm is used,
2 Optimization framework which is inspired by the evolutionary selection process in
nature. The objective and constraint formulation can be either
single objective, where several objectives and constraints are
represented by a weighted sum or multi-objective, where the

Numeca’s FINE™/Design3D optimization framework is
used in conjunction with the FINE™ tool chain from meshing
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optimal designs are found on a so-called Pareto Frontier. All
designs on the m-dimensional Pareto Frontier are non-
dominated by any other design, i.e. they are the best samples
for the given n-dimensional combination of objectives.

2.2. Parametric modeller

AutoBlade™ is a parametric modeler particularly suited for
the representation of turbomachinery configurations. The
blades are fitted by two-dimensional approximations in several
spanwise sections of the blade. These sections are then stacked
to rebuild the 3D blade geometry. Two design modes are
available for the construction of the blade sections. The first,
which is often used for turbine blades, constructs the blade
sections with independent pressure and suctions sides. The
second, which is used here and is more suited for centrifugal
designs, is based on the definition of the camber line and an
addition of a thickness distribution in order to build pressure
and suction sides. The endwalls are also parameterized and all
curves are generally represented by Bezier-Curves.

2.3. Design of Experiment

Based on the parametric representation of the geometry a
subset of parameters is selected for design optimization. This
means that the selected parameters are allowed to vary within
pre-defined bounds. In order to cover the design space in a
computationally efficient way, different types of Design of
Experiment exist, such as Latin Hypercube Sampling, which is
used in this work.

2.4. Surrogate model

Performing design optimization on engineering relevant 3D
designs including CFD and CSM is computationally
expensive. In order to accelerate the optimization process an
approximation of the system response is built based on the DoE
samples. The surrogate model (or response surface model) can
be thought of as a multi-dimensional interpolation of the design
space, which allows to predict the system output (i.e. the
computed quantities likes efficiency, mass flow, etc.) in
between the sample points of the DoE.

2.5. Optimization algorithm

Based on the surrogate model the optimization algorithm,
which is a global search genetic algorithm performs hundreds
of system evaluations at a much reduced cost. This procedure
would computationally not be feasible without the surrogate
model. The optimizer used is a Genetic Algorithm inspired by
the evolutionary selection process in nature and works with
generations. Every subsequent generation inherits from the
previous generation through different mechanisms. First,
elitism allows to keep the best samples in the next generation.
Additional new samples are built based on combinations of
several members of the previous generation and by mutation,
where random effects are introduced. Every next generation
performs better in terms of the defined objectives than the
previous generation. Eventually, after the completion of one
optimization cycle, which consists of several or even hundreds
of generations on the surrogate, one or several best designs are
retained and run as 3D CFD-CSM simulations. The surrogate

is consequently re-calculated and its quality is improved
around the optimal solutions calculated by 3D simulations.

2.6. Objective functions and constraints

There are two possibilities of defining a multi-objective
design optimization problem. First, all the objectives and
constraints can be summarized into a weighted sum of
objectives and constraints. In such a way that the multi-
objective optimization problem is reformulated into a single
objective problem. In this case the optimum depends on the a
priori selection of the weights chosen. The second possibility
is a true multi-objective formulation and as consequence there
is not one single optimum solution, but rather an ensemble of
optimal solutions, which are referred to as Pareto Frontier. This
Pareto Frontier contains the non-dominated samples, which
means that no other sample is performing better at this specific
point in the multi-dimensional response space. Using this
formulation the selection of the optimal design is performed
after the optimization process, where the design engineer needs
to weigh different and often contradicting objectives. A multi-
objective formulation is used in this work.

2.7. Multipoint optimization

Industrial relevant designs need very often not only to be
optimized at their design point, but need also to perform well
in off-design configurations. As an example, increasing the
stall margin could be one of the objectives. The optimization
framework allows to perform multi-point optimization, where
the operational points lie on different speed lines. This is used
in the present work.

3 Uncertainty Quantification (UQ) method

The uncertainty propagation method used within this work is
the non-intrusive probabilistic collocation method [5]. It is
based on the expansion of the solution into Lagrange
interpolating polynomials. The basis points of the polynomial
expansion (the collocation points) are chosen as the as the
Gauss quadrature points by means of the Golub-Welsh
algorithm for general Probability Density Function shapes [2].
A system of uncoupled simulations can be derived, which has
the advantage that this UQ propagation technique can be
wrapped around the flow solver in a non-intrusive way.

3.1. Statistical output moments

Based on the output of the performed simulations, statistical
moments of any output quantity ¢ are automatically

calculated, by taking the weights W, from the Gauss
quadrature. The mean, variance, skewness and kurtosis are
calculated following Eqg. (1) and Eq. (2). This information is
calculated for a selected number of scalar output quantities as
follows:
NP
Mean: = Zwk%(f,l) 1)
k=1
and the second (variance, n=2), third (skewness, n=3) and
fourth moment (kurtosis, n=4)) are calculated as follows:
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3.2. Output PDF reconstruction

Based on the first four statistical output moments, a PDF can
be reconstructed. This is important, because the display of non-
deterministic results by a mean value with an uncertainty bar
corresponding to +o implies a symmetric distribution around
the mean value, whereas the real system response might be
characterized by a skewed distribution. To overcome this, the
Pearson method [7] is used to reconstruct an approximation of
the PDF of a given output quantity from its first four moments.
Figure 1 shows a schematic of the standard PDF shapes to be
selected in function of the third and fourth statistical output
moment by the Pearson method.
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Fig. 1. Schematic of Pearson method.

3.3. Multiple simultaneous uncertainties

Industrial design challenges are usually characterized by a
multitude of simultaneous uncertainties, that cannot be
considered one-by-one, whether they are correlated or not.
Given that quadrature is used to determine the collocation
points, the problem of multiple simultaneous uncertainties
boils down to a multi-dimensional quadrature problem. The
standard approach is a tensor product, which, however, suffers
from the “curse of dimensionality”. This means the
computational cost increases exponentially with the number of
uncertainties considered. In the current work a sparse grid
quadrature, based on Smolyak’s quadrature method [8] is used.
Table 1 summarizes the number of quadrature points contained
in linear growth sparse grid for levels of 1 and 2 in comparison
with a full-tensor grid with the same number of 1D quadrature
points [10].

Table 1. Number of quadrature points N, contained in full
tensor grid and sparse grid.

Level 1 2
Dimension | Tensor | Sparse | Tensor | Sparse
1 3 3 5 5

2 9 5 25 17

3 27 7 125 31

4 81 9 625 49

5 243 11 3125 71

10 59049 | 21 ~9.7e6 | 241

The significant reduction in number of runs makes the
simultaneous treatment of many uncertainties in complex 3D
CFD problems accessible.

3.4. Scaled sensitivity derivatives

An important element in the evaluation of non-deterministic
solutions is the relative influence of a given input uncertainty
on the solution. This influence is estimated by scaled
sensitivity derivatives, as in [9], and applied to the probabilistic
collocation method. The scaled sensitivity derivative is defined
as the partial derivative of the solution u(X,t,&) with respect

to the uncertain input parameter ¢, multiplied with the standard
deviation of the uncertain input parameter as:

ou(X,t,

o (ag_ £) .
I

This provides, on the one hand, the understanding of the system
under investigation and a variation of an uncertain input can be
directly linked to a variation in the output quantity of interest.
On the other hand, it provides an objective measure of the
influence of uncertainties on the output and allows therefore
for an efficient reduction in number of uncertainties by
identifying uncertainties with little influence on the solution.

4 Robust Design Optimization formulation

The optimization objectives and constraints are not single
values in robust optimization, but the mean value and standard
deviation of the objective functions. These statistical moments,
which are the output of the UQ method described above, need
to be calculated for every single design optimization. The most
straightforward approach would be to run full 3D CFD
simulations for every point in the DoE and calculate a surrogate
model for the statistical moments. This is, however, very
costly, since a database usually contains hundreds of points.

The proposed solution is a mixed Design of Experiment
(DoE) comprising of both the design variables and the
uncertainties. To build this mixed DoE, the uncertainties are
added as additional dimensions to the DoE, which requires
harmonizing the way the dimensions are sampled
independently from their type of distribution. Generally,
design parameters in traditional DoE based optimization are
sampled uniformly from a given interval [a, b]. If expressed in
terms of a PDF, such as depicted in figure 2, sampling is done
from a uniform PDF. To combine the sampling of design
variables with the sampling of uncertainties, the PDF (uniform)
is represented by its Cumulative Distribution Function (CDF),
which on its ordinate ranges from 0 to 1. If the ordinate is
divided into equal probable sections, the values of the design
parameters corresponding to these sections account for the
same probability.

For an arbitrary PDF shape, such as sketched in fig. 3, the
principle remains the same. The PDF is expressed as CDF and
it is divided into equal probable intervals, which are mapped
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onto the uncertain parameter. The probability interval spacing

(on the ordinate) is uniform in both cases, but the design and

uncertain parameter spacing varies in function of the PDF
shape. A more detailed description can be found in [3].

PDF CDF

1

0.75

o /

K Uniform
parameter
0.25 L distribution
0 \ Design

U paramete

Fig. 2. Sampling of a design parameter from a uniform
distribution in interval [a, b]. From [3].
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Fig. 3. Sampling of an uncertain variable from an arbitrary
probability density function in interval [a, b]. From [3].
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5 Turbocharger Impeller: Description

The turbocharger compressor studied was numerically and
experimentally investigated by FORD Motor Company for a
wide operation range. It uses an active self-recirculation casing
treatment that extends the compressor flow capacity and
improves the surge margin without any efficiency penalty
through dual bleed slots [4]. The impeller was already the
subject of a multi-point multi-disciplinary optimization study
[1], where the deterministic multi-objective optimization
problem was expressed as a single objective optimization
problem, making use of a weighted sum for the objectives and
constraints.

5.1. Geometry and flow conditions

The impeller comprises 6 main and 6 splitter blades and
needs to perform over a wide range of rotational speeds. Figure
4 shows the blade geometry.

Figure 5 reprints the result of the optimization [1] for the
pressure ratio over non-dimensional mass flow. It illustrates
how the variable geometry is used over a wide operation rate
for a constant speed line. ‘Position 1’ is used in operating
conditions from choke to the design point, while ‘Position 2’ is
used from the design point to stall. As a consequence, two
different meshes are used for points close to choke and close to
stall respectively.

Fig. 4. Solid model of the investigated compressor.

Three different operating points on two different speed
lines are used in the present multi-point optimization study:
- Choke conditions, 120,000 rpm
- Stall conditions, 120,000 rpm
- Stall conditions, 40,000 rpm
- Mechanical stresses at 135,000rpm

Following [1] these operating points are chosen because
they are more critical to performance than the design point. It
is expected that the design point follows the positive evolution
of the extreme conditions. This effect can also be seen in Figure
5.
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Fig. 5. Pressure ratio over non-dimensional mass flow [1]
5.2. Parametric model

A parametric model consists of a total of 294 parameters
which are used to reconstruct the shape of the blades, the
endwalls and the solid body model which will be used for the
Finite Element Analysis (FEA) to assess the stresses present on
the model. Of these parameters, 19 are free to variate for the
optimization purposes. In order to ensure that all designs are
realistic and can be manufactured, some of the free parameters
are dependent on other parameters through mathematical
expressions. An extended definition of the parametric model
used is given in [1].
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5.3. Operational and geometrical uncertainties

The following uncertainties are propagated and taken into
account during the robust design optimization.

Geometrical
e Tip gap height £25% (symmetric beta-PDF)
o Blade thickness +1% (symmetric beta-PDF)
Operational
The boundary conditions used for the simulations at
stall and choke conditions are not the same. While at
the stall points, the total pressure is imposed at the
inlet, at the choke point the static pressure at the outlet
is imposed. The uncertainty imposed is:
o +1% (symmetric beta-PDF) of the total pressure
at the inlet or static pressure at the outlet
respectively

6 Deterministic design optimization

The  deterministic ~ multi-disciplinary ~ multi-point
optimization problem is characterized by its design variables,
operating conditions and multi-disciplinary objective and
constraint formulations. In view of a comparison with the
robust design, it is formulated as a multi-objective optimization
problem.

6.1. Design variables

A total of 19 design parameters is used for the description
of the optimization problem:
e 2 parameters for the hub line
e 3 parameters for the camber line in two sections, i.e. a
total of 6 parameters
e 3 parameters for the camber line of the splitter in two
sections, i.e. a total of 6 parameters
e 1 parameter for the meridional location of the splitter
e 2 parameters for the tangential location of the splitter
e 2 parameters for the tangential stacking
The parameters of the camber line definition of the blade
sections are optimized, while the thickness distribution is kept
constant.

6.2. Operating points

The flow conditions taken into the multi-point optimization
are the following:

e Choke conditions for
120000rpm

e  Stall conditions for high rotation speed at 120000rpm

e Stall conditions for low rotation speed at 40000rpm

e Mechanical stresses are calculated at a rotation speed
of 135000rpm, which is 5000rpm higher than in [1]

6.3. Deterministic Design: Objective and constraint
formulation

high rotation speed at

The overall objectives and constraints are the following:
e Improve or not deteriorate the performances
e Improve stall margin

e At least keep the capacity (choke mass flow)
e Maintain the peak mechanical stresses

The back plate was optimized with respect to mechanical
stresses in [1] and the already optimized geometry is taken for
this study. As a consequence a constraint is formulated on the
mechanical stresses. This translates into the following
objective and constraint formulations:

e Maximize efficiency in the two stall points (2

objectives)

e  Maximise choke mass flow (1 objective)

e Maintain level pressure ratio in the two stall points (2

constraints)

e Maintain level of von Mises Stresses (1 constraint)

7 Robust design optimization

The robust design formulation is the following.

7.1. Design variables and uncertainties

The design variables are the same as for the deterministic
optimization and listed in section 6.1 and the uncertainties
included are the ones listed in section 5.3.

7.2. Operating points

The same operating points as for the deterministic
optimization are considered as listed in section 6.2.

7.3. Robust Design: Objective and constraint formulation

The global design objectives remain the same, however, in
robust design optimization the uncertainties are taken into
account. The optimization is formulated in a robust way with
respect to the performances. This translates into the following
objective and constraint formulations:

e Maximize the mean value of the efficiency in the two

stall points (2 objectives)

e Minimize the standard deviation of the efficiency in

the two stall points (2 objectives)

e Maximize the mean value of the choke mass flow (1

objective)

e Minimize the standard deviation of the choke mass

flow (1 objective)

e Maintain the level of the mean value of the pressure

ratio in the two stall points (2 constraints)

e Maintain the level of the mean value of von Mises

Stresses (1 constraint)

8 Analysis of robust design optimization and comparison
with deterministic design optimization

As shown in sections 6 and 7, the difference between
deterministic and robust design optimization lies mainly in the
definition of the optimization objectives. While the
deterministic optimization maximizes the efficiency, the robust
design optimization maximizes the mean value of the
efficiency and simultaneously minimizes the standard
deviation of efficiency. Both optimization studies in this work
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are based on multi-objective formulations, where the robust
design optimization has a higher number of objectives, which
are the statistical moments (mean and standard deviation) of
the same objective functions as the deterministic optimization.
In order to compare deterministic and robust design UQ studies
are performed on the found deterministic optimal designs. This
allows to plot the deterministic designs in the Pareto diagrams
of the robust design optimization, showing the mean value and
standard deviation of the quantities of interest.

8.1. Deterministic design optimization

The deterministic design optimization reaches the objectives
defined under section 6.3 as shown in the Pareto diagrams in
figures 6 to 11. All values are normalized by the value of the
original design. Increasing the choke mass flow and improving
the peak efficiency near stall are shown to be conflicting
objectives since they form a clear Pareto frontier for rotational
speeds of 120,000rpm and 40,000rpm respectively (as seen in
fig. 6 and fig. 7). The original design proofs to be a compromise
between peak efficiency near stall and maximum choke mass
flow and lies close the Pareto frontier.
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Fig. 6: Pareto plot for choke mass flow over efficiency at
120,000rpm
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40,000rpm

Three optimal designs are selected, which are discussed in the
following. Design 1, which increases the choke mass flow by
6.8%, but reduces the peak efficiency by 3.6%, Design 2,
which improves both choke mass flow and peak efficiency near
stall by 0.9% and 1.0% respectively, and Design 3, which
maximizes peak efficiency near stall by 4.4%, but reduces the
choke mass flow by 9.9%. It is shown in fig. 8 to 11 that all

three designs keep the von Mises stresses in an acceptable
range and keep nearly constant or increase slightly the pressure
ratio for all designs. Only exception is design 3 that shows a
slightly reduced pressure ratio at 40,000rpm. All values are
listed in table 2.
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Fig. 8: Pareto plot for von Mises stresses over efficiency at
120,000rpm
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Fig. 9: Pareto plot for pressure ratio over efficiency at
120,000rpm

Given the global objectives as defined deterministic design 2 is
the optimal design of choice as it increases both the choke mass
flow and efficiency near stall, while keeping the mechanical
stress levels under the critical range and slightly improving the
pressure ratio.

Table 2. Normalized objective function values of deterministic
optimal design.

1120 M40 | Mchoke | Ml 120 | M40 | 6 von
Mises

Original 1 1 1 1 1 1
Dej'g” 0.964 | 0.980 | 1.068 | 1.010 | 1.003 | 1.020
De;'gn 1.010 | 1.013 | 1.009 | 1.021 | 1.001 | 1.044
DeZ'gn 1.044 | 1.028 | 0.901 | 1.007 | 0.999 | 1.042

Figure 10 shows flow velocity vectors together with the colour
contour of the magnitude of the flow velocity for the near stall
point at 120,000rpm. A recirculation through the bleed slot is
installed at low mass flows. For high mass flow rates close to
choke conditions some flow bypasses the first part of the
impeller as seen in fig. 11. This increases the range of
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operability on the choke side by adding additional mass
through the bypass to the impeller and by not limiting it to the
choking mass flow rate.

Fig. 10: Original Design: Flow velocity vectors and colour
contour of the magnitude of the flow velocity (near stall point
at 120,000rpm)

Fig. 11: Original Design: Flow velocity vectors and colour
contour of the magnitude of the flow velocity (near choke at
120,000rpm)

Figures 12 and 13 show optimal Design 1 and Design 3 which
have the highest and lowest choke mass flow rate of the
retained designs, respectively. Figure 12 shows that the flow
velocity is significantly increased in the bypass for Design 1
compared with the original design and Design 3. The hub line
is a free design parameter for the optimization, which leads to
a design that accelerates the flow due to the hub shape as seen
in fig. 13 if compared with the original hub design in fig. 11.

To indicate the zones of flow losses across the impeller the
entropy is visualized in several streamwise cutting planes from
before the leading edge of the impeller, across the blade,
shortly after the trailing edge and into the vaneless diffuser.
The entropy colour contours are shown in fig. 14 (original
design), fig. 15 (design 1) and fig. 16 (design 3) respectively.

Fig. 12: Design 1: Flow velocity vectors and colour contour of
the magnitude of the flow velocity (near choke at 120,000rpm)

Fig. 13: Design 3: Flow velocity vectors and colour contour of
the magnitude of the flow velocity (near choke at 120,000rpm)

Fig. 14: Original design: Entropy and entropy isolines along
streamwise cuts
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Fig. 15: Design 1: Entropy and entropy isolines along
streamwise cuts

Fig. 16: Design 3: Entropy and entropy isolines along
streamwise cuts

Design 1 is characterized by a lower efficiency as listed in table
2. Comparison of figures 14 and 15 shows that the entropy
increases in streamwise direction over the blade and carries
into the diffuser. Design 3, which shows a significantly
increased efficiency exhibits significantly lower levels of
entropy across the blade and in the diffuser.

The absolute radial velocity at 50% of the span height is shown
in figures 17 to 19 for the original and optimal designs 1 and 3.
The velocity isolines give an indication of the flow deviation
at the trailing edge of the impeller. Design 3 in fig. 19 shows
the flow is more aligned with the blade at the trailing edge,
which results in less mixing of the flow and consequently
higher efficiencies. Design 3 is indeed characterized by the
highest efficiency among the retained optimized geometries.
Design 1 in fig. 18 shows the highest flow deviation resulting
in a lower efficiency.

While figures 11 to 13 provide an illustration of the shape
deformation of the hub across the Pareto optimal designs, the
differences in blade shape and location are visible in figures 17

to 19. As an example the distance between the main blade and
splitter blade is significantly larger in design 3 compared to the
original design, while design 1 shows a stronger sweep in the
second part of the blade in streamwise direction being one
reason of the lower efficiencies.

Fig. 17: Original Design: 3D geometry shape and absolute
radial velocity at mid-span plane (120,000rpm near stall)

Fig. 18: Deterministic design 1: 3D geometry shape and
absolute radial velocity at mid-span plane (120,000rpm near
stall)

Fig. 19: Deterministic design 3: 3D geometry shape and
absolute radial velocity at mid-span plane (120,000rpm near
stall)

8.2. Robust design optimization

A previous study [10] showed the necessity of multipoint
robust design optimization if the machine is operated outside
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the design point. The robust design optimization in [10] led
indeed to a design that allowed for significant reduction in the
variability of the responses in the presence of uncertainties. A
performance curve performed on the robust optimal designs
showed that the variability in the design point —which was used
for the single point robust design optimization — was reduced,
but at the expense of increased variability of the responses in
off-design points. A conclusion from that study was the
necessity of multipoint robust design optimization as in this
present work. At the same time the hypothesis arose that a
deterministic multipoint optimization without explicit
formulation of optimization objectives in a robust way, i.e. in
form of minimizing the standard deviation of quantities of
interest, could lead to globally more robust designs.

Figures 20 to 25 show several two-dimensional Pareto
diagrams resulting from the robust design optimization. The
quantities of interest are thus either their mean value or
standard deviation. For reasons of comparability, UQ
simulations were performed on the obtained deterministic
optimal designs as well as on the original design. This allows
to plot them in terms of their statistical moments together with
the results of the robust design optimization.
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Fig. 20: Pareto plot for mean choke mass flow over mean
efficiency at 120,000rpm

Figure 20 shows the mean choke mass flow over the efficiency
near stall for 120,000rpm for the original design together with
the two robust optimal designs selected and the three
deterministic optimal design retained. It is seen that the
deterministic designs lay along the Pareto frontier and are
optimal in the sense of mean value of choke mass flow and
efficiency near stall at 120,000rpm. Figures 21 shows the
Pareto diagrams for the standard deviation of choke mass flow
over the mean efficiency. Figure 22 shows the standard
deviation of efficiency over the choke mass flow, where it is
seen that design 1 and 3 are close to the Pareto frontier, while
design 2 is not. The two robust optimal designs selected lie
both along the Pareto frontier of standard deviation of choke
mass flow over mean efficiency in fig. 21. The robust design 1
that shows an increase in mean choke mass flow, shows a
significant reduction in standard deviation of efficiency. This
was not achieved by any of the deterministic optimal designs
and it can be supposed that this is a consequence of to the
explicit definition of an objective to minimize the standard
deviation of choke mass flow. This comes however at the
expense of a decreased mean pressure ratio and increased

mechanical stresses as seen in fig. 23 to 25. The robust design
2 that increases the mean efficiency near stall even more than
the deterministic design 3, shows a smaller increase in standard
deviation of choke mass flow compared to the deterministic
design 3, while the standard deviation in efficiency is slightly
smaller for the robust design 2.
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Fig. 21: Pareto plot for standard deviation choke mass flow
over mean efficiency at 120,000rpm
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Table 3 summarizes the mean values used for figures 20 to 24
and table 4 the standard deviations. Comparing tables 2 and 3
it can be seen that the deterministic global values are close to
the mean values. This is case specific, highly dependent on the
input uncertainties, and based on the authors experience not a
general conclusion.
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Fig. 24: Pareto plot for mean von Mises stresses mean
efficiency at 120,000rpm

Table 3. Normalized mean objective function values of all
optimal design.

Mean | mio | M4 | Monoke | M120 | M40 | & von
Mises

Original | 1 | 1 1 1 1 L
Deilgn 0,972 | 0,980 | 1,067 | 1,010 | 1,004 | 1,078
Dezlgn 1,016 | 1,014 | 1,004 | 1,018 | 1,001 | 1,045
De;lgn 1,054 | 1,030 | 0,891 | 1,005 | 0,999 | 1,043
Ro?ust 0,962 | 0,973 | 1,042 | 0,972 | 1,000 | 1,558
Rogust 1,060 | 1,015 | 0,873 | 0,963 | 0,991 | 1,301

Table 4. Normalized standard deviation of objective function
values of all optimal design.

Std. 1120 M40 Mchoke | TIT 120 IT 40

dev.
Original 1 1 1 1 1
Deilgﬂ 1,368 | 0,981 | 0,928 | 1,715 | 1,213
De;lgﬂ 2,966 | 1,277 | 1,317 | 0,891 | 1,226
De;lgﬂ 1,538 | 1,281 | 1,808 | 0,601 | 1,443
ROE”“ 0521 | 0804 | 0670 | -— | -
Rog”“ 1,208 | 1,151 | 1,433 | - | -

As seenin fig. 21 the standard deviation of the choke mass flow
increases for the three selected designs with a tendency of
increasing standard deviation from design 1 over design 2 to
design 3. It can also be seen that robust design 1 reaches a
reduction in standard deviation of chock mass flow below the
value of the original design and below the value of the
deterministic design 1. Plotting the PDFs of the deterministic
designs retained, as shown in fig. 25, all three optimal designs
and the original design show narrow and symmetric PDFs. The
fact that the PDFs are symmetric means that the variation of
the choke mass flow over the range of the uncertainties is
approximately linear.
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Fig. 25: Reconstructed choke mass flow PDFs for operating
point near choke at 120,000rpm

Figure 22 shows a slight increase in standard deviation in
efficiency for design 1 and 3 and a significant increase for
design 2. Consequently the PDF shape of the isentropic
efficiency are wider for the optimal designs compared to the
original designs as seen in fig. 26. The robust design 1,
however, clearly reduces the width of the distribution. The
same applies to the pressure ratio shown in fig. 27, the robust
design can narrow the spread of the response.
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Fig. 26: Reconstructed isentropic efficiency PDFs for
operating point near stall at 120,000rpm
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Fig. 27: Reconstructed pressure ratio PDFs for operating point
near stall at 40,000rpm

An important element in understanding the behaviour of the
machine is to identify the origins of the spread in output
guantities, such as choke mass flow, efficiency or pressure
ratio. As described in section 3.4 scaled sensitivity derivatives
allow to assess the influence of the individual uncertainties on
the solution.

Figure 28 shows the scaled sensitivities of the choke mass flow
with respect to the three uncertainties included in this study as
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defined in section 5.3. It is seen that the tip clearance shows
first the largest influence on the choke mass flow and second
that this influence is equivalent for the three designs retained.
The diagram is to read as follows: decreasing the tip clearance
leads in an increase of the choke mass flow.
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OPERATIONAL_MULTT THICKNESS
Fig. 28: Scaled sensitivities of choke mass flow for design 1
(brown), design 2 (blue), and design 3 (black)

TIP_GAP

The influence of the blade thickness distribution depends on
the design, while decreasing the blade thickness distribution
leads to an increase of the choke mass flow for designs 1 and
2, an increasing in the blade thickness distribution leads to an
increase in choke mass flow for design 3.

Scaled sensitivity derivatives can be calculated for all
computed quantities with respect to all uncertainties. Figure 29
shows the scaled sensitivity of the isentropic efficiency at
120,000rpm. Also for the efficiency the tip clearance has the
highest sensitivity on the solution, in this case, and in contrast
to the choke mass flow sensitivities, the sensitivity of designs
1 and 3 is significantly smaller than the sensitivity of design 2.
This means that design 2 is the design most sensitive to
variations in the tip clearance. Only desigh 3 has a notable
sensitivity of the efficiency to the blade thickness distribution,
while designs 1 and 2 are basically insensitive to the blade
thickness distribution.
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Fig. 29: Scaled sensitivities of isentropic efficiency at
120,000rpm for design 1 (brown), design 2 (blue), and design
3 (black)
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Fig. 30: Scaled sensitivities of isentropic efficiency at
40,000rpm for design 1 (brown), design 2 (blue), and design 3
(black)

Comparison of fig. 29 with fig. 30 shows that the influence of
uncertainties varies also with the operating conditions as
shown on the example of the efficiency at 120,000rpm and
40,000rpm respectively. While the tip clearance has by far the
most important influence on the efficiency at 120,000rpm on
design 2, the differences are much less pronounced at
40,000rpm. Design 3 is even the most sensitive to the tip
clearance at 40,000rpm. It must be noted, however, that the
scaled sensitivity, which has the unit of the quantity itself is
shown in absolute values. In absolute values the sensitivity of
design 2 decreases by a factor of nearly 3 passing from
120,000rpm to 40,000rpm, while the sensitivity of design 3
decreases by approximately 25%.

Scaled sensitivities of the two retained robust designs are
shown in fig. 31, fig 34 and fig. 35. As seen from fig. 20, the
robust design 1 is comparable to the deterministic design 1 and
the robust design 2 is comparable to the robust design 3, which
is also reflected in the colour code of the following figures.
With respect to the choke mass flow dependency on the tip
clearance, it can however be noted that in contrast to the
deterministic designs 1 and 3, the scaled sensitivity derivatives
of the robust designs vary by a factor 4, while the deterministic
designs have comparable sensitivities. The sensitivity on the
blade thickness of the two robust designs is comparable as seen
in fig. 31, while it changes sign for the deterministic designs 1
and 3 as seen in fig. 28.
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Fig. 31: Scaled sensitivities of choke mass flow for robust
design 1 (brown) and robust design 2 (black)
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The scaled sensitivity of the isentropic efficiency at
120,000rpm with respect to the tip clearance also changes sign
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for the two retained robust designs (fig. 34), while
deterministic designs 1 and 3 did not show a dependency with
opposite signs. Increasing the tip clearance increases the
efficiency of robust design 1, while increasing the tip clearance
decreases the efficiency of robust design 2. This behaviour of
robust design 1 is counter intuitive and the change in sign is not
observed at 40,000rpm. Figures 15 and 16 compare the entropy
at several streamwise cuts between design 1 and 3, where
design 3 shows lower entropy levels and higher efficiencies.
The blade shape of design 1 is less appropriate in terms of
efficiency as discussed above. To explain the positive
sensitivity of the efficiency with respect to the tip gap of design
1, figures 32 and 33 show the entropy for the lowest and highest
tip gap value of design 1. It is seen that a larger tip gip leads,
due to the specificities of this particular blade design, to lower
entropy levels and thus higher efficiencies.

Fig. 32: Entropy for design 1 near stall at 120,000rpm with
minimum tip gap.

Fig. 33: Entropy for design 1 near stall at 120,000rpm with

maximum tip gap.
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Fig. 34: Scaled “sensitivities of isentropic efficiency at
120,000rpm for robust design 1 (brown) and robust design 2
(black)

THICKNESS TIP_GAP

0.0002

0.0000,
-0 Ouuz- -
—0.0004-

-0.0006

(40 000 rpm)I-1

~0.0008

Scaled sensitivity derivative
of Isentropic Efficiency

L |
-0.0010

THICKNE: TP GAP

~(h0012

OPERATIONAL MULTT

Fig. 35: Scaled sensitivities of isentropic efficiency at
40,000rpm for robust design 1 (brown) and robust design 2
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Cartesian plots along sections in the flow field allow extracting
ranges of variability of output quantities. Figures 36 to 38 show
Cartesian plots of the pitchwise averaged total temperature and
pressure along spanwise sections at the leading and trailing
edge of the main blade respectively. Figure 36 shows the
pitchwise averaged total temperature over span. At the leading
edge (LE) the variability is small and the difference in mean
value between the different designs is small, while the
differences in mean value at the trailing edge (TE) are more
pronounced. The variability increases with increasing span and
reaches its maximum (largest standard deviation visualized by
the bars) close to the tip. Given that the uncertainty on the tip
gap was shown to have the most important influence on the
flow performance this is explained by different flow conditions
close to the tip of the blade.
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Fig. 36: Total temperature at near choke point (120,000rpm)

Figures 37 shows the pitchwise averaged total temperature
over span for the operating point close to stall at 40,000rpm.
The total temperature distribution is significantly different at
the leading edge for the different designs. The mean value of
the total temperature reduces for designs 1 and 2 and increases
for design 3, while their variability is almost constant across
the various designs. At the trailing edge the variability in
pitchwise averaged total temperature is smaller for all designs
at low span positions, while it also increases with increasing
span. It can be noted that the original design and design 2 show
very similar mean values and variability, while design 1 and 3
are offset, but with the same trend. Design 2 is the design that
lies closest to the original design on the various global quantity
Pareto plots. Figure 38 shows the pitchwise averaged total

12
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temperature over span for the operating point close to stall at
120,000rpm. It must be noted that design 1 has a significantly
different variability compared with the other designs at the
leading edge. In particular, the standard deviation is
significantly higher at midspan positions, while the mean value
is similar. Figures 45 and 46 show the colour contours that
explain this high standard deviation, which is a result of the
uncertainty in the tip clearance. The influence of a robust
design optimization formulation becomes visible if the
distribution of the robust design 1 is compared with the one of
the deterministic design 1. Both designs lie in the same region
of the performance Pareto plots, but the robust design limits
largely the variation of total temperature distribution of span,
as seen in fig. 38.

At the trailing edge the variability is larger for all designs at
low span positions and close to the tip of the blade. Most
notably the original design exhibits a relative high variability
at low span position in comparison with the optimal designs,
which are as a consequence more robust with respect to the
pitchwise averaged total temperature over span (fig. 38).
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Fig. 37: Total temperature at near stall (40,000rpm)
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Figure 39 shows the total pressure at the operating point near
stall at 40,000rpm. It shows a very fundamental property of
non-deterministic simulations. At the leading edge the mean
value of the pitchwise averaged total pressure is notably
different from the deterministic total pressure value obtained at
the nominal conditions of the input uncertainty distributions
(circles in fig. 39). This means that running the deterministic
simulation with its nominal conditions gives the values

indicated by the circles as response, while the mean value
calculated if the uncertainties around these nominal conditions
are taken into account are given by the other symbols. Their
range of variability is again visualized by the bars. In general,
if a given output quantity (here the pitchwise averaged total
pressure) shows a non-linear behaviour the range of variability
of the input uncertainties, the mean value of the output quantity
is different from the deterministic value at its nominal

conditions.
Ef::e:ji

b

_TE

~<4--<+ Design 1

Sl A Design 2
B4

2 xf i ->--p- Design 3

\ Robust 1

{ >-->- Robust 2

{ »#=++- Original

<-4 Design 1
~A--A- Design 2

os >-p- Design 3
Robust 1

»-> Robust 2
§0s ++--+ Original

"
3
!

*

04

i

PRI
»

.nnll‘»o-aonitnu

3

]

S -]
125
Total Pressure
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The above figures 36 to 39, show the spanwise variability of
pitchwise averaged quantities. Colour contours can be used to
show the origins of these variabilities if for example the colour
contour of the absolute total temperature is plotted for the
minimum and maximum tip gap configuration that are part of
the UQ simulations. Figure 40 to 43 show the absolute total
temperature on planes that are constant in spanwise direction;
fig. 41 and fig. 42 for a spanwise value of 0.1 and thus close to
the hub and fig. 43 and fig. 44 for a spanwise value of 0.96
close to the tip. The tip gap is chosen as it was identified as the
most influential uncertainty. The near stall operating point at
120,000rpm is retained for this comparison at the example of
design 1.

Fig. 41: Absolute total temperature for operating point near
stall at 120,000rpm for design 1 and minimum value of tip gap
uncertainty at spanwise position 0.1
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Fig. 42: Absolute total temperature for operating point near
stall at 120,000rpm for design 1 and maximum value of tip gap
uncertainty at spanwise position 0.1

Comparing fig. 41 and fig. 42 it is seen that the colour contours
vary notably close to the trailing edge for a spanwise position
of 0.1. If compared with fig. 38 it is seen that this is the area
where design 1 shows a large standard deviation. Figures 43
and 44 show the minimum and maximum configuration at a
spanwise position of 0.96. The difference close to the trailing
edge leads also here to notable variations. It is interesting to
note that the colour contours show significantly different
responses in the middle of the blade (in streamwise direction)
as seen in fig. 43 and 44. Figure 38 shows a large variation at
midspan close to the leading edge. This variation seems to be
reduced in streamwise position. Finally, fig. 45 and fig. 46
show the absolute total temperature close to the leading edge
at mid-span position. These differences in magnitude are
responsible for large variability at mid-span close to the leading
edge.

Fig. 43: Absolute total temperature for operating point near
stall at 120,000rpm for design 1 and minimum value of tip gap
uncertainty at spanwise position 0.96

Fig. 44: Absolute total temperature for operating point near
stall at 120,000rpm for design 1 and maximum value of tip gap
uncertainty at spanwise position 0.96

Fig. 45: Absolute total temperature for operating point near
stall at 120,000rpm for design 1 and minimum value of tip gap
uncertainty at mid-span position

Fig. 46: Absolute total temperature for operating point near
stall at 120,000rpm for design 1 and maximum value of tip gap
uncertainty at mid-span position
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9 Conclusions

A recently developed strategy for Robust Design
Optimization (RDO), i.e. optimization under uncertainties
while reducing the variability of the system output with respect
to the input uncertainties is applied to a turbocharger impeller.
A recent application of this RDO strategy to an axial
compressor blade showed that a multi-point formulation is of
foremost importance for an industrial application of robust
design optimization, since otherwise off-design points become
less robust. Given that the investigated turbocharger
compressor has an active self-recirculation casing treatment
design, the multi-point optimization problem combines three
operating points on two different speed lines. Both fluid and
structural simulations are performed and mechanical stresses
are included as constraints in the optimization problems.

Two design optimization studies are performed, first a
deterministic multipoint optimization and second, a robust
multipoint design optimization accounting for uncertainties in
the optimization process. The robust design optimization
includes explicit definition of objective functions on the mean
value and standard deviation of output quantities. It is shown
that the multipoint formulation of the deterministic
optimization leads to designs which lie on or close to the robust
Pareto fronts. It was supposed before the study that a multi-
point formulation might lead to somewhat more robust designs
compared with a single point optimization of the same
configuration, the clarity of the present findings is nevertheless
unexpected.

The objectives increasing choke mass flow and increasing
efficiency are strongly conflicting and a clear Pareto front is
formed. The further mechanical stress levels tend to increase
with higher efficiencies. The original design is located very
close the Pareto front and provides already a good compromise
of all conflicting objectives, but designs can be found that
increase both mean values of choke mass flow and efficiency
by approximately 1.5% for each. In addition the robust design
formulation shows the capability of reducing the standard
deviations of output quantities below levels reached by the
deterministic design optimizations and thus allows to find more
robust designs in terms of these objectives.

The UQ post-processing tools are used to analyze and
discuss the different designs showing how scaled sensitivities
can precisely identify the uncertainties responsible for
variability in the response.
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