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Summary 

A recently developed strategy for Robust Design Optimization (RDO), i.e. optimization under uncertainties while reducing 

the variability of the system output with respect to the input uncertainties is applied to a turbocharger impeller. The RDO strategy 

relies on the non-intrusive probabilistic collocation method for the propagation of uncertainties and a global surrogate assisted 

optimization strategy, where a mixed Design of Experiments (DoE) is built. This mixed DoE comprises both design variables 

and uncertainties as individual dimensions. A recent application of this RDO strategy to an axial compressor blade showed that 

a multi-point formulation is of foremost importance for an industrial application of robust design optimization, since otherwise 

off-design points become less robust. The turbocharger impeller was studied in a previous work using a deterministic multi-

disciplinary multi-point strategy. In the current work a robust design optimization formulation is set-up and applied to the 

turbocharger impeller. Given that the investigated turbocharger compressor has an active self-recirculation casing treatment 

design, the multi-point optimization problem combines three operating points on two different speed lines: One operating point 

close to choke and one close to stall conditions on the higher speed line and one operating point close to stall conditions on the 

lower speed line. The multi-disciplinary formulation comes from the calculation of mechanical stresses of the various designs. 

The importance and benefits of the robust design optimization formulation are shown in comparison with the deterministic 

optimization of the same geometry.  

Keywords: optimization under uncertainty, uncertainty quantification, robust design optimization, automotive centrifugal 

compressor. 

 

1 Introduction 

The design of turbomachinery blades is a highly complex 

and multidisciplinary task. Automotive turbochargers for 

example face the challenge of heavy exhaust gas recirculation, 

which is needed to meet stringent emission regulations and to 

reach fuel efficient engines. These challenges are addressed 

nowadays by means of virtual prototyping. This involves 

various disciplines such as Computational Fluid Dynamics 

(CFD) or Computational Structural Mechanics (CSM). 

However, the design process is still overwhelmingly 

deterministic, neglecting the influences of uncertainties. At the 

same time uncertainties resulting from manufacturing or 

assembly variability or varying operating conditions can have 

a significant influences on the performance stability. It is thus 

the goal of robust design optimization to aim at an improved 

performance but at the same time to guarantee a stable 

performance if the geometry deviates from the design 

geometry or operating conditions deviate from the nominal 

flow conditions. These aspects need to be included in the future 

design process in order to provide a range of confidence with 

the simulation results. In this work, such a robust design 

optimization is applied to an automotive turbocharger, which 

relies on exhaust gas recirculation.  

2 Optimization framework 

Numeca’s FINETM/Design3D optimization framework is 

used in conjunction with the FINETM tool chain from meshing 

(AutoGrid5TM), parametric modelling (AutoBladeTM), and 

flow solver (FINETM/Turbo). In the following the general 

principle of the deterministic optimization chain as well as its 

individual components are described.  

2.1. General principle 

The general principle of FINETM/Design3D relies on four 

main building blocks. First, a parametric modeler that allows 

to re-engineer turbomachinery geometries and consequently 

modify the geometries by changing the values of the design 

parameters used. In this work the in-house AutoBladeTM 

modeler is used, but any external modeler can be coupled into 

the optimization chain. Based on the parametric model a 

Design of Experiment (DoE) is built with the goal to sample 

the n-dimensional design space, where n is the number of 

design variables. Each sample in the DoE represents a full 3D 

CFD-CSM simulation. These samples are used to build an 

approximate solution, a so-called surrogate model, spanning 

over the entire design space by “interpolating” the system 

response between the sample points. This allows to perform the 

optimization on the surrogate model instead of having to run 

full 3D CFD-CSM simulations for every optimization sample. 

The optimization strategy is global in the sense that the 

optimizer searches for an optimal configuration everywhere in 

the design space. To this end a Genetic Algorithm is used, 

which is inspired by the evolutionary selection process in 

nature. The objective and constraint formulation can be either 

single objective, where several objectives and constraints are 

represented by a weighted sum or multi-objective, where the 
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optimal designs are found on a so-called Pareto Frontier. All 

designs on the m-dimensional Pareto Frontier are non-

dominated by any other design, i.e. they are the best samples 

for the given n-dimensional combination of objectives.  

2.2. Parametric modeller 

AutoBladeTM is a parametric modeler particularly suited for 

the representation of turbomachinery configurations. The 

blades are fitted by two-dimensional approximations in several 

spanwise sections of the blade. These sections are then stacked 

to rebuild the 3D blade geometry. Two design modes are 

available for the construction of the blade sections. The first, 

which is often used for turbine blades, constructs the blade 

sections with independent pressure and suctions sides. The 

second, which is used here and is more suited for centrifugal 

designs, is based on the definition of the camber line and an 

addition of a thickness distribution in order to build pressure 

and suction sides. The endwalls are also parameterized and all 

curves are generally represented by Bezier-Curves.  

2.3. Design of Experiment 

Based on the parametric representation of the geometry a 

subset of parameters is selected for design optimization. This 

means that the selected parameters are allowed to vary within 

pre-defined bounds. In order to cover the design space in a 

computationally efficient way, different types of Design of 

Experiment exist, such as Latin Hypercube Sampling, which is 

used in this work.  

2.4. Surrogate model 

Performing design optimization on engineering relevant 3D 

designs including CFD and CSM is computationally 

expensive. In order to accelerate the optimization process an 

approximation of the system response is built based on the DoE 

samples. The surrogate model (or response surface model) can 

be thought of as a multi-dimensional interpolation of the design 

space, which allows to predict the system output (i.e. the 

computed quantities likes efficiency, mass flow, etc.) in 

between the sample points of the DoE.  

2.5. Optimization algorithm 

Based on the surrogate model the optimization algorithm, 

which is a global search genetic algorithm performs hundreds 

of system evaluations at a much reduced cost. This procedure 

would computationally not be feasible without the surrogate 

model. The optimizer used is a Genetic Algorithm inspired by 

the evolutionary selection process in nature and works with 

generations. Every subsequent generation inherits from the 

previous generation through different mechanisms. First, 

elitism allows to keep the best samples in the next generation. 

Additional new samples are built based on combinations of 

several members of the previous generation and by mutation, 

where random effects are introduced. Every next generation 

performs better in terms of the defined objectives than the 

previous generation. Eventually, after the completion of one 

optimization cycle, which consists of several or even hundreds 

of generations on the surrogate, one or several best designs are 

retained and run as 3D CFD-CSM simulations. The surrogate 

is consequently re-calculated and its quality is improved 

around the optimal solutions calculated by 3D simulations. 

2.6. Objective functions and constraints 

There are two possibilities of defining a multi-objective 

design optimization problem. First, all the objectives and 

constraints can be summarized into a weighted sum of 

objectives and constraints. In such a way that the multi-

objective optimization problem is reformulated into a single 

objective problem. In this case the optimum depends on the a 

priori selection of the weights chosen. The second possibility 

is a true multi-objective formulation and as consequence there 

is not one single optimum solution, but rather an ensemble of 

optimal solutions, which are referred to as Pareto Frontier. This 

Pareto Frontier contains the non-dominated samples, which 

means that no other sample is performing better at this specific 

point in the multi-dimensional response space. Using this 

formulation the selection of the optimal design is performed 

after the optimization process, where the design engineer needs 

to weigh different and often contradicting objectives. A multi-

objective formulation is used in this work. 

2.7. Multipoint optimization 

Industrial relevant designs need very often not only to be 

optimized at their design point, but need also to perform well 

in off-design configurations. As an example, increasing the 

stall margin could be one of the objectives. The optimization 

framework allows to perform multi-point optimization, where 

the operational points lie on different speed lines. This is used 

in the present work.  

3 Uncertainty Quantification (UQ) method 

The uncertainty propagation method used within this work is 

the non-intrusive probabilistic collocation method [5]. It is 

based on the expansion of the solution into Lagrange 

interpolating polynomials. The basis points of the polynomial 

expansion (the collocation points) are chosen as the as the 

Gauss quadrature points by means of the Golub-Welsh 

algorithm for general Probability Density Function shapes [2]. 

A system of uncoupled simulations can be derived, which has 

the advantage that this UQ propagation technique can be 

wrapped around the flow solver in a non-intrusive way.   

3.1. Statistical output moments 

Based on the output of the performed simulations, statistical 

moments of any output quantity  are automatically 

calculated, by taking the weights  from the Gauss 

quadrature. The mean, variance, skewness and kurtosis are 

calculated following Eq. (1) and Eq. (2). This information is 

calculated for a selected number of scalar output quantities as 

follows:  

Mean:    (1) 

and the second (variance, n=2), third (skewness, n=3) and 

fourth moment (kurtosis, n=4)) are calculated as follows: 



kw



EUROGEN 2017 September 13–15, 2017, Madrid, Spain 

3 

 

    (2) 

3.2. Output PDF reconstruction 

Based on the first four statistical output moments, a PDF can 

be reconstructed. This is important, because the display of non-

deterministic results by a mean value with an uncertainty bar 

corresponding to ±𝜎 implies a symmetric distribution around 

the mean value, whereas the real system response might be 

characterized by a skewed distribution. To overcome this, the 

Pearson method [7] is used to reconstruct an approximation of 

the PDF of a given output quantity from its first four moments. 

Figure 1 shows a schematic of the standard PDF shapes to be 

selected in function of the third and fourth statistical output 

moment by the Pearson method. 

 
Fig. 1. Schematic of Pearson method. 

 

3.3. Multiple simultaneous uncertainties 

Industrial design challenges are usually characterized by a 

multitude of simultaneous uncertainties, that cannot be 

considered one-by-one, whether they are correlated or not. 

Given that quadrature is used to determine the collocation 

points, the problem of multiple simultaneous uncertainties 

boils down to a multi-dimensional quadrature problem. The 

standard approach is a tensor product, which, however, suffers 

from the “curse of dimensionality”. This means the 

computational cost increases exponentially with the number of 

uncertainties considered. In the current work a sparse grid 

quadrature, based on Smolyak’s quadrature method [8] is used. 

Table 1 summarizes the number of quadrature points contained 

in linear growth sparse grid for levels of 1 and 2 in comparison 

with a full-tensor grid with the same number of 1D quadrature 

points [10]. 

 

Table 1. Number of quadrature points Np contained in full 

tensor grid and sparse grid. 

Level 1 2 

Dimension Tensor Sparse Tensor Sparse 

1 3 3 5 5 

2 9 5 25 17 

3 27 7 125 31 

4 81 9 625 49 

5 243 11 3125 71 

… … … … … 

10 59049 21 ≈9.7e6 241 

 

The significant reduction in number of runs makes the 

simultaneous treatment of many uncertainties in complex 3D 

CFD problems accessible.  

3.4. Scaled sensitivity derivatives 

An important element in the evaluation of non-deterministic 

solutions is the relative influence of a given input uncertainty 

on the solution. This influence is estimated by scaled 

sensitivity derivatives, as in [9], and applied to the probabilistic 

collocation method. The scaled sensitivity derivative is defined 

as the partial derivative of the solution  ,, txu


  with respect 

to the uncertain input parameter  , multiplied with the standard 

deviation of the uncertain input parameter as: 

 

i

txu
i 






 ,,


      (3)  

This provides, on the one hand, the understanding of the system 

under investigation and a variation of an uncertain input can be 

directly linked to a variation in the output quantity of interest. 

On the other hand, it provides an objective measure of the 

influence of uncertainties on the output and allows therefore 

for an efficient reduction in number of uncertainties by 

identifying uncertainties with little influence on the solution.  

 

4 Robust Design Optimization formulation 

The optimization objectives and constraints are not single 

values in robust optimization, but the mean value and standard 

deviation of the objective functions. These statistical moments, 

which are the output of the UQ method described above, need 

to be calculated for every single design optimization. The most 

straightforward approach would be to run full 3D CFD 

simulations for every point in the DoE and calculate a surrogate 

model for the statistical moments. This is, however, very 

costly, since a database usually contains hundreds of points.  

The proposed solution is a mixed Design of Experiment 

(DoE) comprising of both the design variables and the 

uncertainties. To build this mixed DoE, the uncertainties are 

added as additional dimensions to the DoE, which requires 

harmonizing the way the dimensions are sampled 

independently from their type of distribution. Generally, 

design parameters in traditional DoE based optimization are 

sampled uniformly from a given interval [a, b]. If expressed in 

terms of a PDF, such as depicted in figure 2, sampling is done 

from a uniform PDF. To combine the sampling of design 

variables with the sampling of uncertainties, the PDF (uniform) 

is represented by its Cumulative Distribution Function (CDF), 

which on its ordinate ranges from 0 to 1. If the ordinate is 

divided into equal probable sections, the values of the design 

parameters corresponding to these sections account for the 

same probability. 

For an arbitrary PDF shape, such as sketched in fig. 3, the 

principle remains the same. The PDF is expressed as CDF and 

it is divided into equal probable intervals, which are mapped 

  



pN

k

n

kkn txw
1

1, 

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onto the uncertain parameter. The probability interval spacing 

(on the ordinate) is uniform in both cases, but the design and 

uncertain parameter spacing varies in function of the PDF 

shape. A more detailed description can be found in [3]. 

 

Fig. 2. Sampling of a design parameter from a uniform 

distribution in interval [a, b]. From [3]. 

 

Fig. 3. Sampling of an uncertain variable from an arbitrary 

probability density function in interval [a, b]. From [3]. 

5 Turbocharger Impeller: Description 

The turbocharger compressor studied was numerically and 

experimentally investigated by FORD Motor Company for a 

wide operation range. It uses an active self-recirculation casing 

treatment that extends the compressor flow capacity and 

improves the surge margin without any efficiency penalty 

through dual bleed slots [4]. The impeller was already the 

subject of a multi-point multi-disciplinary optimization study 

[1], where the deterministic multi-objective optimization 

problem was expressed as a single objective optimization 

problem, making use of a weighted sum for the objectives and 

constraints.  

5.1. Geometry and flow conditions 

The impeller comprises 6 main and 6 splitter blades and 

needs to perform over a wide range of rotational speeds. Figure 

4 shows the blade geometry.  

Figure 5 reprints the result of the optimization [1] for the 

pressure ratio over non-dimensional mass flow. It illustrates 

how the variable geometry is used over a wide operation rate 

for a constant speed line. ‘Position 1’ is used in operating 

conditions from choke to the design point, while ‘Position 2’ is 

used from the design point to stall. As a consequence, two 

different meshes are used for points close to choke and close to 

stall respectively. 

 

 
Fig. 4. Solid model of the investigated compressor. 

 

Three different operating points on two different speed 

lines are used in the present multi-point optimization study: 

- Choke conditions, 120,000 rpm 

- Stall conditions, 120,000 rpm 

- Stall conditions, 40,000 rpm 

- Mechanical stresses at 135,000rpm 

 

Following [1] these operating points are chosen because 

they are more critical to performance than the design point. It 

is expected that the design point follows the positive evolution 

of the extreme conditions. This effect can also be seen in Figure 

5. 

 
Fig. 5. Pressure ratio over non-dimensional mass flow [1] 

5.2. Parametric model 

A parametric model consists of a total of 294 parameters 

which are used to reconstruct the shape of the blades, the 

endwalls and the solid body model which will be used for the 

Finite Element Analysis (FEA) to assess the stresses present on 

the model. Of these parameters, 19 are free to variate for the 

optimization purposes. In order to ensure that all designs are 

realistic and can be manufactured, some of the free parameters 

are dependent on other parameters through mathematical 

expressions. An extended definition of the parametric model 

used is given in [1]. 
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5.3. Operational and geometrical uncertainties 

The following uncertainties are propagated and taken into 

account during the robust design optimization. 

 

Geometrical 

 Tip gap height ±25% (symmetric beta-PDF) 

 Blade thickness ±1% (symmetric beta-PDF) 

Operational 

The boundary conditions used for the simulations at 

stall and choke conditions are not the same. While at 

the stall points, the total pressure is imposed at the 

inlet, at the choke point the static pressure at the outlet 

is imposed. The uncertainty imposed is: 

 ±1% (symmetric beta-PDF) of the total pressure 

at the inlet or static pressure at the outlet 

respectively 

 

6 Deterministic design optimization 

The deterministic multi-disciplinary multi-point 

optimization problem is characterized by its design variables, 

operating conditions and multi-disciplinary objective and 

constraint formulations. In view of a comparison with the 

robust design, it is formulated as a multi-objective optimization 

problem. 

6.1. Design variables 

A total of 19 design parameters is used for the description 

of the optimization problem: 

 2 parameters for the hub line 

 3 parameters for the camber line in two sections, i.e. a 

total of 6 parameters 

 3 parameters for the camber line of the splitter in two 

sections, i.e. a total of 6 parameters 

 1 parameter for the meridional location of the splitter 

 2 parameters for the tangential location of the splitter 

 2 parameters for the tangential stacking 

The parameters of the camber line definition of the blade 

sections are optimized, while the thickness distribution is kept 

constant.  

6.2. Operating points 

The flow conditions taken into the multi-point optimization 

are the following: 

 Choke conditions for high rotation speed at 

120000rpm 

 Stall conditions for high rotation speed at 120000rpm 

 Stall conditions for low rotation speed at 40000rpm 

 Mechanical stresses are calculated at a rotation speed 

of 135000rpm, which is 5000rpm higher than in [1] 

6.3. Deterministic Design: Objective and constraint 

formulation 

The overall objectives and constraints are the following: 

 Improve or not deteriorate the performances 

 Improve stall margin 

 At least keep the capacity (choke mass flow) 

 Maintain the peak mechanical stresses 

 

The back plate was optimized with respect to mechanical 

stresses in [1] and the already optimized geometry is taken for 

this study. As a consequence a constraint is formulated on the 

mechanical stresses. This translates into the following 

objective and constraint formulations: 

 Maximize efficiency in the two stall points (2 

objectives) 

 Maximise choke mass flow (1 objective) 

 Maintain level pressure ratio in the two stall points (2 

constraints) 

 Maintain level of von Mises Stresses (1 constraint) 

 

7 Robust design optimization 

The robust design formulation is the following. 

7.1. Design variables and uncertainties 

The design variables are the same as for the deterministic 

optimization and listed in section 6.1 and the uncertainties 

included are the ones listed in section 5.3. 

7.2. Operating points 

The same operating points as for the deterministic 

optimization are considered as listed in section 6.2. 

7.3. Robust Design: Objective and constraint formulation 

The global design objectives remain the same, however, in 

robust design optimization the uncertainties are taken into 

account. The optimization is formulated in a robust way with 

respect to the performances. This translates into the following 

objective and constraint formulations: 

 Maximize the mean value of the efficiency in the two 

stall points (2 objectives) 

 Minimize the standard deviation of the efficiency in 

the two stall points (2 objectives) 

 Maximize the mean value of the choke mass flow (1 

objective) 

 Minimize the standard deviation of the choke mass 

flow (1 objective) 

 Maintain the level of the mean value of the pressure 

ratio in the two stall points (2 constraints) 

 Maintain the level of the mean value of von Mises 

Stresses (1 constraint) 

8 Analysis of robust design optimization and comparison 

with deterministic design optimization 

As shown in sections 6 and 7, the difference between 

deterministic and robust design optimization lies mainly in the 

definition of the optimization objectives. While the 

deterministic optimization maximizes the efficiency, the robust 

design optimization maximizes the mean value of the 

efficiency and simultaneously minimizes the standard 

deviation of efficiency. Both optimization studies in this work 
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are based on multi-objective formulations, where the robust 

design optimization has a higher number of objectives, which 

are the statistical moments (mean and standard deviation) of 

the same objective functions as the deterministic optimization. 

In order to compare deterministic and robust design UQ studies 

are performed on the found deterministic optimal designs. This 

allows to plot the deterministic designs in the Pareto diagrams 

of the robust design optimization, showing the mean value and 

standard deviation of the quantities of interest. 

8.1. Deterministic design optimization 

The deterministic design optimization reaches the objectives 

defined under section 6.3 as shown in the Pareto diagrams in 

figures 6 to 11. All values are normalized by the value of the 

original design. Increasing the choke mass flow and improving 

the peak efficiency near stall are shown to be conflicting 

objectives since they form a clear Pareto frontier for rotational 

speeds of 120,000rpm and 40,000rpm respectively (as seen in 

fig. 6 and fig. 7). The original design proofs to be a compromise 

between peak efficiency near stall and maximum choke mass 

flow and lies close the Pareto frontier.  

 

 
 

Fig. 6: Pareto plot for choke mass flow over efficiency at 

120,000rpm  

 

 
Fig. 7: Pareto plot for choke mass flow over efficiency at 

40,000rpm  

 

Three optimal designs are selected, which are discussed in the 

following. Design 1, which increases the choke mass flow by 

6.8%, but reduces the peak efficiency by 3.6%, Design 2, 

which improves both choke mass flow and peak efficiency near 

stall by 0.9% and 1.0% respectively, and Design 3, which 

maximizes peak efficiency near stall by 4.4%, but reduces the 

choke mass flow by 9.9%. It is shown in fig. 8 to 11 that all 

three designs keep the von Mises stresses in an acceptable 

range and keep nearly constant or increase slightly the pressure 

ratio for all designs. Only exception is design 3 that shows a 

slightly reduced pressure ratio at 40,000rpm. All values are 

listed in table 2. 

 

 
Fig. 8: Pareto plot for von Mises stresses over efficiency at 

120,000rpm  

 

 
Fig. 9: Pareto plot for pressure ratio over efficiency at 

120,000rpm  

 

Given the global objectives as defined deterministic design 2 is 

the optimal design of choice as it increases both the choke mass 

flow and efficiency near stall, while keeping the mechanical 

stress levels under the critical range and slightly improving the 

pressure ratio. 

 

Table 2. Normalized objective function values of deterministic 

optimal design. 

 η 120 η 40 mchoke Π 120 Π 40 σ von 

Mises 

Original 1 1 1 1 1 1 

Design 

1 
0.964 0.980 1.068 1.010 1.003 1.020 

Design 

2 
1.010 1.013 1.009 1.021 1.001 1.044 

Design 

3 
1.044 1.028 0.901 1.007 0.999 1.042 

 

Figure 10 shows flow velocity vectors together with the colour 

contour of the magnitude of the flow velocity for the near stall 

point at 120,000rpm. A recirculation through the bleed slot is 

installed at low mass flows. For high mass flow rates close to 

choke conditions some flow bypasses the first part of the 

impeller as seen in fig. 11. This increases the range of 
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operability on the choke side by adding additional mass 

through the bypass to the impeller and by not limiting it to the 

choking mass flow rate. 

 

 
Fig. 10: Original Design: Flow velocity vectors and colour 

contour of the magnitude of the flow velocity (near stall point 

at 120,000rpm) 

 

 
Fig. 11: Original Design: Flow velocity vectors and colour 

contour of the magnitude of the flow velocity (near choke at 

120,000rpm) 

 

Figures 12 and 13 show optimal Design 1 and Design 3 which 

have the highest and lowest choke mass flow rate of the 

retained designs, respectively. Figure 12 shows that the flow 

velocity is significantly increased in the bypass for Design 1 

compared with the original design and Design 3. The hub line 

is a free design parameter for the optimization, which leads to 

a design that accelerates the flow due to the hub shape as seen 

in fig. 13 if compared with the original hub design in fig. 11. 

 

To indicate the zones of flow losses across the impeller the 

entropy is visualized in several streamwise cutting planes from 

before the leading edge of the impeller, across the blade, 

shortly after the trailing edge and into the vaneless diffuser. 

The entropy colour contours are shown in fig. 14 (original 

design), fig. 15 (design 1) and fig. 16 (design 3) respectively.  

 

 
Fig. 12: Design 1: Flow velocity vectors and colour contour of 

the magnitude of the flow velocity (near choke at 120,000rpm) 

 

 
Fig. 13: Design 3: Flow velocity vectors and colour contour of 

the magnitude of the flow velocity (near choke at 120,000rpm)  

 

 

 
Fig. 14: Original design: Entropy and entropy isolines along 

streamwise cuts 
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Fig. 15: Design 1: Entropy and entropy isolines along 

streamwise cuts 

 

 
Fig. 16: Design 3: Entropy and entropy isolines along 

streamwise cuts 

 

Design 1 is characterized by a lower efficiency as listed in table 

2. Comparison of figures 14 and 15 shows that the entropy 

increases in streamwise direction over the blade and carries 

into the diffuser. Design 3, which shows a significantly 

increased efficiency exhibits significantly lower levels of 

entropy across the blade and in the diffuser. 

 

The absolute radial velocity at 50% of the span height is shown 

in figures 17 to 19 for the original and optimal designs 1 and 3. 

The velocity isolines give an indication of the flow deviation 

at the trailing edge of the impeller. Design 3 in fig. 19 shows 

the flow is more aligned with the blade at the trailing edge, 

which results in less mixing of the flow and consequently 

higher efficiencies. Design 3 is indeed characterized by the 

highest efficiency among the retained optimized geometries. 

Design 1 in fig. 18 shows the highest flow deviation resulting 

in a lower efficiency. 

 

While figures 11 to 13 provide an illustration of the shape 

deformation of the hub across the Pareto optimal designs, the 

differences in blade shape and location are visible in figures 17 

to 19. As an example the distance between the main blade and 

splitter blade is significantly larger in design 3 compared to the 

original design, while design 1 shows a stronger sweep in the 

second part of the blade in streamwise direction being one 

reason of the lower efficiencies. 

 

 
Fig. 17: Original Design: 3D geometry shape and absolute 

radial velocity at mid-span plane (120,000rpm near stall) 

 

 
Fig. 18: Deterministic design 1: 3D geometry shape and 

absolute radial velocity at mid-span plane (120,000rpm near 

stall) 

 

 
Fig. 19: Deterministic design 3: 3D geometry shape and 

absolute radial velocity at mid-span plane (120,000rpm near 

stall) 

 

8.2. Robust design optimization 

A previous study [10] showed the necessity of multipoint 

robust design optimization if the machine is operated outside 
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the design point. The robust design optimization in [10] led 

indeed to a design that allowed for significant reduction in the 

variability of the responses in the presence of uncertainties. A 

performance curve performed on the robust optimal designs 

showed that the variability in the design point – which was used 

for the single point robust design optimization – was reduced, 

but at the expense of increased variability of the responses in 

off-design points. A conclusion from that study was the 

necessity of multipoint robust design optimization as in this 

present work. At the same time the hypothesis arose that a 

deterministic multipoint optimization without explicit 

formulation of optimization objectives in a robust way, i.e. in 

form of minimizing the standard deviation of quantities of 

interest, could lead to globally more robust designs.     

 

Figures 20 to 25 show several two-dimensional Pareto 

diagrams resulting from the robust design optimization. The 

quantities of interest are thus either their mean value or 

standard deviation. For reasons of comparability, UQ 

simulations were performed on the obtained deterministic 

optimal designs as well as on the original design. This allows 

to plot them in terms of their statistical moments together with 

the results of the robust design optimization. 

 

 
Fig. 20: Pareto plot for mean choke mass flow over mean 

efficiency at 120,000rpm 

 

Figure 20 shows the mean choke mass flow over the efficiency 

near stall for 120,000rpm for the original design together with 

the two robust optimal designs selected and the three 

deterministic optimal design retained. It is seen that the 

deterministic designs lay along the Pareto frontier and are 

optimal in the sense of mean value of choke mass flow and 

efficiency near stall at 120,000rpm. Figures 21 shows the 

Pareto diagrams for the standard deviation of choke mass flow 

over the mean efficiency. Figure 22 shows the standard 

deviation of efficiency over the choke mass flow, where it is 

seen that design 1 and 3 are close to the Pareto frontier, while 

design 2 is not. The two robust optimal designs selected lie 

both along the Pareto frontier of standard deviation of choke 

mass flow over mean efficiency in fig. 21. The robust design 1 

that shows an increase in mean choke mass flow, shows a 

significant reduction in standard deviation of efficiency. This 

was not achieved by any of the deterministic optimal designs 

and it can be supposed that this is a consequence of to the 

explicit definition of an objective to minimize the standard 

deviation of choke mass flow. This comes however at the 

expense of a decreased mean pressure ratio and increased 

mechanical stresses as seen in fig. 23 to 25. The robust design 

2 that increases the mean efficiency near stall even more than 

the deterministic design 3, shows a smaller increase in standard 

deviation of choke mass flow compared to the deterministic 

design 3, while the standard deviation in efficiency is slightly 

smaller for the robust design 2.  

 

 
Fig. 21: Pareto plot for standard deviation choke mass flow 

over mean efficiency at 120,000rpm 

 

 
Fig. 22: Pareto plot for standard deviation efficiency over mean 

choke mass flow at 120,000rpm 

 

 
Fig. 23: Pareto plot for mean pressure ratio over mean 

efficiency at 120,000rpm  

 

Table 3 summarizes the mean values used for figures 20 to 24 

and table 4 the standard deviations. Comparing tables 2 and 3 

it can be seen that the deterministic global values are close to 

the mean values. This is case specific, highly dependent on the 

input uncertainties, and based on the authors experience not a 

general conclusion.  
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Fig. 24: Pareto plot for mean von Mises stresses mean 

efficiency at 120,000rpm  

 

 Table 3. Normalized mean objective function values of all 

optimal design. 

Mean η 120 η 40 mchoke Π 120 Π 40 σ von 

Mises 

Original 1 1 1 1 1 1 

Design 

1 
0,972 0,980 1,067 1,010 1,004 1,078 

Design 

2 
1,016 1,014 1,004 1,018 1,001 1,045 

Design 

3 
1,054 1,030 0,891 1,005 0,999 1,043 

Robust 

1 
0,962 0,973 1,042 0,972 1,000 1,558 

Robust 

2 
1,060 1,015 0,873 0,963 0,991 1,301 

 

Table 4. Normalized standard deviation of objective function 

values of all optimal design. 

Std. 

dev. 

η 120 η 40 mchoke Π 120 Π 40 

Original 1 1 1 1 1 

Design 

1 
1,368 0,981 0,928 1,715 1,213 

Design 

2 
2,966 1,277 1,317 0,891 1,226 

Design 

3 
1,538 1,281 1,808 0,601 1,443 

Robust 

1 
0,521 0,804 0,670 --- --- 

Robust 

2 
1,298 1,151 1,433 --- --- 

 

As seen in fig. 21 the standard deviation of the choke mass flow 

increases for the three selected designs with a tendency of 

increasing standard deviation from design 1 over design 2 to 

design 3. It can also be seen that robust design 1 reaches a 

reduction in standard deviation of chock mass flow below the 

value of the original design and below the value of the 

deterministic design 1. Plotting the PDFs of the deterministic 

designs retained, as shown in fig. 25, all three optimal designs 

and the original design show narrow and symmetric PDFs. The 

fact that the PDFs are symmetric means that the variation of 

the choke mass flow over the range of the uncertainties is 

approximately linear.   

 
Fig. 25: Reconstructed choke mass flow PDFs for operating 

point near choke at 120,000rpm  

 

Figure 22 shows a slight increase in standard deviation in 

efficiency for design 1 and 3 and a significant increase for 

design 2. Consequently the PDF shape of the isentropic 

efficiency are wider for the optimal designs compared to the 

original designs as seen in fig. 26. The robust design 1, 

however, clearly reduces the width of the distribution. The 

same applies to the pressure ratio shown in fig. 27, the robust 

design can narrow the spread of the response. 

 

 
Fig. 26: Reconstructed isentropic efficiency PDFs for 

operating point near stall at 120,000rpm 

 

 
Fig. 27: Reconstructed pressure ratio PDFs for operating point 

near stall at 40,000rpm 

 

An important element in understanding the behaviour of the 

machine is to identify the origins of the spread in output 

quantities, such as choke mass flow, efficiency or pressure 

ratio. As described in section 3.4 scaled sensitivity derivatives 

allow to assess the influence of the individual uncertainties on 

the solution.  

Figure 28 shows the scaled sensitivities of the choke mass flow 

with respect to the three uncertainties included in this study as 
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defined in section 5.3. It is seen that the tip clearance shows 

first the largest influence on the choke mass flow and second 

that this influence is equivalent for the three designs retained. 

The diagram is to read as follows: decreasing the tip clearance 

leads in an increase of the choke mass flow.  

 

 
Fig. 28: Scaled sensitivities of choke mass flow for design 1 

(brown), design 2 (blue), and design 3 (black) 

 

The influence of the blade thickness distribution depends on 

the design, while decreasing the blade thickness distribution 

leads to an increase of the choke mass flow for designs 1 and 

2, an increasing in the blade thickness distribution leads to an 

increase in choke mass flow for design 3. 

 

Scaled sensitivity derivatives can be calculated for all 

computed quantities with respect to all uncertainties. Figure 29 

shows the scaled sensitivity of the isentropic efficiency at 

120,000rpm. Also for the efficiency the tip clearance has the 

highest sensitivity on the solution, in this case, and in contrast 

to the choke mass flow sensitivities, the sensitivity of designs 

1 and 3 is significantly smaller than the sensitivity of design 2. 

This means that design 2 is the design most sensitive to 

variations in the tip clearance. Only design 3 has a notable 

sensitivity of the efficiency to the blade thickness distribution, 

while designs 1 and 2 are basically insensitive to the blade 

thickness distribution.  

 

 
Fig. 29: Scaled sensitivities of isentropic efficiency at 

120,000rpm for design 1 (brown), design 2 (blue), and design 

3 (black) 

 
Fig. 30: Scaled sensitivities of isentropic efficiency at 

40,000rpm for design 1 (brown), design 2 (blue), and design 3 

(black) 

 

Comparison of fig. 29 with fig. 30 shows that the influence of 

uncertainties varies also with the operating conditions as 

shown on the example of the efficiency at 120,000rpm and 

40,000rpm respectively. While the tip clearance has by far the 

most important influence on the efficiency at 120,000rpm on 

design 2, the differences are much less pronounced at 

40,000rpm. Design 3 is even the most sensitive to the tip 

clearance at 40,000rpm. It must be noted, however, that the 

scaled sensitivity, which has the unit of the quantity itself is 

shown in absolute values. In absolute values the sensitivity of 

design 2 decreases by a factor of nearly 3 passing from 

120,000rpm to 40,000rpm, while the sensitivity of design 3 

decreases by approximately 25%. 

 

Scaled sensitivities of the two retained robust designs are 

shown in fig. 31, fig 34 and fig. 35. As seen from fig. 20, the 

robust design 1 is comparable to the deterministic design 1 and 

the robust design 2 is comparable to the robust design 3, which 

is also reflected in the colour code of the following figures. 

With respect to the choke mass flow dependency on the tip 

clearance, it can however be noted that in contrast to the 

deterministic designs 1 and 3, the scaled sensitivity derivatives 

of the robust designs vary by a factor 4, while the deterministic 

designs have comparable sensitivities. The sensitivity on the 

blade thickness of the two robust designs is comparable as seen 

in fig. 31, while it changes sign for the deterministic designs 1 

and 3 as seen in fig. 28. 

 

 
Fig. 31: Scaled sensitivities of choke mass flow for robust 

design 1 (brown) and robust design 2 (black) 

 

The scaled sensitivity of the isentropic efficiency at 

120,000rpm with respect to the tip clearance also changes sign 
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for the two retained robust designs (fig. 34), while 

deterministic designs 1 and 3 did not show a dependency with 

opposite signs. Increasing the tip clearance increases the 

efficiency of robust design 1, while increasing the tip clearance 

decreases the efficiency of robust design 2. This behaviour of 

robust design 1 is counter intuitive and the change in sign is not 

observed at 40,000rpm. Figures 15 and 16 compare the entropy 

at several streamwise cuts between design 1 and 3, where 

design 3 shows lower entropy levels and higher efficiencies. 

The blade shape of design 1 is less appropriate in terms of 

efficiency as discussed above. To explain the positive 

sensitivity of the efficiency with respect to the tip gap of design 

1, figures 32 and 33 show the entropy for the lowest and highest 

tip gap value of design 1. It is seen that a larger tip gip leads, 

due to the specificities of this particular blade design, to lower 

entropy levels and thus higher efficiencies. 

 

 
Fig. 32: Entropy for design 1 near stall at 120,000rpm with 

minimum tip gap. 

 

 
Fig. 33:  Entropy for design 1 near stall at 120,000rpm with 

maximum tip gap. 

 

 
Fig. 34: Scaled sensitivities of isentropic efficiency at 

120,000rpm for robust design 1 (brown) and robust design 2 

(black) 

 
Fig. 35: Scaled sensitivities of isentropic efficiency at 

40,000rpm for robust design 1 (brown) and robust design 2 

(black) 

 

Cartesian plots along sections in the flow field allow extracting 

ranges of variability of output quantities. Figures 36 to 38 show 

Cartesian plots of the pitchwise averaged total temperature and 

pressure along spanwise sections at the leading and trailing 

edge of the main blade respectively. Figure 36 shows the 

pitchwise averaged total temperature over span. At the leading 

edge (LE) the variability is small and the difference in mean 

value between the different designs is small, while the 

differences in mean value at the trailing edge (TE) are more 

pronounced. The variability increases with increasing span and 

reaches its maximum (largest standard deviation visualized by 

the bars) close to the tip. Given that the uncertainty on the tip 

gap was shown to have the most important influence on the 

flow performance this is explained by different flow conditions 

close to the tip of the blade. 

Fig. 36: Total temperature at near choke point (120,000rpm)  

Figures 37 shows the pitchwise averaged total temperature 

over span for the operating point close to stall at 40,000rpm. 

The total temperature distribution is significantly different at 

the leading edge for the different designs. The mean value of 

the total temperature reduces for designs 1 and 2 and increases 

for design 3, while their variability is almost constant across 

the various designs. At the trailing edge the variability in 

pitchwise averaged total temperature is smaller for all designs 

at low span positions, while it also increases with increasing 

span. It can be noted that the original design and design 2 show 

very similar mean values and variability, while design 1 and 3 

are offset, but with the same trend. Design 2 is the design that 

lies closest to the original design on the various global quantity 

Pareto plots. Figure 38 shows the pitchwise averaged total 
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temperature over span for the operating point close to stall at 

120,000rpm. It must be noted that design 1 has a significantly 

different variability compared with the other designs at the 

leading edge. In particular, the standard deviation is 

significantly higher at midspan positions, while the mean value 

is similar. Figures 45 and 46 show the colour contours that 

explain this high standard deviation, which is a result of the 

uncertainty in the tip clearance. The influence of a robust 

design optimization formulation becomes visible if the 

distribution of the robust design 1 is compared with the one of 

the deterministic design 1. Both designs lie in the same region 

of the performance Pareto plots, but the robust design limits 

largely the variation of total temperature distribution of span, 

as seen in fig. 38. 

At the trailing edge the variability is larger for all designs at 

low span positions and close to the tip of the blade. Most 

notably the original design exhibits a relative high variability 

at low span position in comparison with the optimal designs, 

which are as a consequence more robust with respect to the 

pitchwise averaged total temperature over span (fig. 38). 

 

Fig. 37: Total temperature at near stall (40,000rpm) 

 

 
Fig. 38: Total temperature at near stall (120,000rpm)  

 

Figure 39 shows the total pressure at the operating point near 

stall at 40,000rpm. It shows a very fundamental property of 

non-deterministic simulations. At the leading edge the mean 

value of the pitchwise averaged total pressure is notably 

different from the deterministic total pressure value obtained at 

the nominal conditions of the input uncertainty distributions 

(circles in fig. 39). This means that running the deterministic 

simulation with its nominal conditions gives the values 

indicated by the circles as response, while the mean value 

calculated if the uncertainties around these nominal conditions 

are taken into account are given by the other symbols. Their 

range of variability is again visualized by the bars. In general, 

if a given output quantity (here the pitchwise averaged total 

pressure) shows a non-linear behaviour the range of variability 

of the input uncertainties, the mean value of the output quantity 

is different from the deterministic value at its nominal 

conditions. 

 
Fig. 39: Total pressure at near stall (40,000rpm) 

 

The above figures 36 to 39, show the spanwise variability of 

pitchwise averaged quantities. Colour contours can be used to 

show the origins of these variabilities if for example the colour 

contour of the absolute total temperature is plotted for the 

minimum and maximum tip gap configuration that are part of 

the UQ simulations. Figure 40 to 43 show the absolute total 

temperature on planes that are constant in spanwise direction; 

fig. 41 and fig. 42 for a spanwise value of 0.1 and thus close to 

the hub and fig. 43 and fig. 44 for a spanwise value of 0.96 

close to the tip. The tip gap is chosen as it was identified as the 

most influential uncertainty. The near stall operating point at 

120,000rpm is retained for this comparison at the example of 

design 1.  

 

 
Fig. 41: Absolute total temperature for operating point near 

stall at 120,000rpm for design 1 and minimum value of tip gap 

uncertainty at spanwise position 0.1 
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Fig. 42: Absolute total temperature for operating point near 

stall at 120,000rpm for design 1 and maximum value of tip gap 

uncertainty at spanwise position 0.1 

 

Comparing fig. 41 and fig. 42 it is seen that the colour contours 

vary notably close to the trailing edge for a spanwise position 

of 0.1. If compared with fig. 38 it is seen that this is the area 

where design 1 shows a large standard deviation. Figures 43 

and 44 show the minimum and maximum configuration at a 

spanwise position of 0.96. The difference close to the trailing 

edge leads also here to notable variations. It is interesting to 

note that the colour contours show significantly different 

responses in the middle of the blade (in streamwise direction) 

as seen in fig. 43 and 44. Figure 38 shows a large variation at 

midspan close to the leading edge. This variation seems to be 

reduced in streamwise position. Finally, fig. 45 and fig. 46 

show the absolute total temperature close to the leading edge 

at mid-span position. These differences in magnitude are 

responsible for large variability at mid-span close to the leading 

edge. 

 

 
Fig. 43: Absolute total temperature for operating point near 

stall at 120,000rpm for design 1 and minimum value of tip gap 

uncertainty at spanwise position 0.96 

 

 
Fig. 44: Absolute total temperature for operating point near 

stall at 120,000rpm for design 1 and maximum value of tip gap 

uncertainty at spanwise position 0.96 

 

 
Fig. 45: Absolute total temperature for operating point near 

stall at 120,000rpm for design 1 and minimum value of tip gap 

uncertainty at mid-span position 

 

 
Fig. 46: Absolute total temperature for operating point near 

stall at 120,000rpm for design 1 and maximum value of tip gap 

uncertainty at mid-span position 
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9 Conclusions 

A recently developed strategy for Robust Design 

Optimization (RDO), i.e. optimization under uncertainties 

while reducing the variability of the system output with respect 

to the input uncertainties is applied to a turbocharger impeller. 

A recent application of this RDO strategy to an axial 

compressor blade showed that a multi-point formulation is of 

foremost importance for an industrial application of robust 

design optimization, since otherwise off-design points become 

less robust. Given that the investigated turbocharger 

compressor has an active self-recirculation casing treatment 

design, the multi-point optimization problem combines three 

operating points on two different speed lines. Both fluid and 

structural simulations are performed and mechanical stresses 

are included as constraints in the optimization problems.  

Two design optimization studies are performed, first a 

deterministic multipoint optimization and second, a robust 

multipoint design optimization accounting for uncertainties in 

the optimization process. The robust design optimization 

includes explicit definition of objective functions on the mean 

value and standard deviation of output quantities. It is shown 

that the multipoint formulation of the deterministic 

optimization leads to designs which lie on or close to the robust 

Pareto fronts. It was supposed before the study that a multi-

point formulation might lead to somewhat more robust designs 

compared with a single point optimization of the same 

configuration, the clarity of the present findings is nevertheless 

unexpected.  

The objectives increasing choke mass flow and increasing 

efficiency are strongly conflicting and a clear Pareto front is 

formed. The further mechanical stress levels tend to increase 

with higher efficiencies. The original design is located very 

close the Pareto front and provides already a good compromise 

of all conflicting objectives, but designs can be found that 

increase both mean values of choke mass flow and efficiency 

by approximately 1.5% for each. In addition the robust design 

formulation shows the capability of reducing the standard 

deviations of output quantities below levels reached by the 

deterministic design optimizations and thus allows to find more 

robust designs in terms of these objectives. 

The UQ post-processing tools are used to analyze and 

discuss the different designs showing how scaled sensitivities 

can precisely identify the uncertainties responsible for 

variability in the response.  
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