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Abstract 
This paper presents the SNGR (Stochastic Noise Generation and Radiation) method. Based on RANS 

simulation input, this method strongly reduces the computation cost associated with the CFD simulation in 

comparison to direct LES-based acoustic noise source computations. 

After the theoretical description of the method, this work will analyze the numerical convergence of the 

different parameters involved in the source generation, namely: (i) number of random samples; (ii) number 

of turbulent modes; and (iii) CFD cell size.  The numerical efficiency will also be evaluated. To do so, the 

solution for a low Mach number (M<0.1) panel HVAC duct will be considered and compared with 

experimental data and acoustic predictions based on unsteady CFD simulations available in the literature.  

1 Introduction 

Direct computation of aeroacoustic noise sources generated by turbulent processes requires computationally 

costly unsteady CFD simulations, hardly affordable for industrial purposes. This high computational cost is 

mainly because of the disparity between the fluid dynamics and acoustic length scales. In one hand, direct 

noise computations must resolve both small and large eddies generating acoustic waves in the near field, 

requiring some mesh constraints. On the other hand, such waves must be propagated up to the far-field 

where a listener is placed requiring large (sometimes very extensive) computational domains. Therefore, a 

decoupling of the acoustic solution from the CFD simulation (commonly known as hybrid method) must be 

employed [1]. 

Even if hybrid methods may reduce the computational cost, the process remains computational expensive 

since it requires an accurate Large Eddy Simulation (LES) [2]. For example, the single calculation of a car 

side mirror flow could require weeks of computation on a mid-size cluster in order to reach appropriate flow 

statistics and resolution to compute noise sources up to the target frequency.  

In contrast to LES, the steady-state Reynolds Averaged Navier-Stokes method (RANS) allows for a more 

cost-effective process. The main idea behind the RANS method is to parametrize the effect of sub-grid 

eddies on the mean flow, so that the mesh can be coarser while still maintaining good accuracy for the mean 

flow.  

The SNGR (Stochastic Noise Generation and Radiation) method originally presented by R. Kraichnan [3] 
and extended by C. Bailly and D. Juvé [4] allows for the generation of noise sources using a steady-state 

RANS. This stochastic method synthetizes a turbulent velocity field from a finite sum of statically 

independent Fourier modes with modal amplitudes estimated as a function of the RANS fields, i.e.  turbulent 

kinetic energy and turbulent dissipation rate. Afterwards, acoustic sources are computed using Lighthill’s 

analogy. The originality of the implementation relies on: (i) the frequency/wavenumber domain approach 

of the velocity fluctuations; (ii) the efficient sources computation; and (iii) integration of the sources in a 

finite element acoustic mesh.  
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The present paper describes the SNGR method implemented inside Actran [5] to synthetically generate 

aeroacoustic sources from steady-state RANS information. Later, such sources are imposed as the right-

hand side of the acoustic solver based on the finite element method. Details of the SNGR method are 

presented in section 2 followed by numerical demonstrations on two applications (section 3). As a first 

application case, an idealized pseudo-3D case (section 3.1) is used to analyze the numerical convergence of 

the method regarding: (i) the number of random samples; (ii) the number of turbulent modes; and (iii) the 

CFD mesh size. Secondly, results from an HVAC (Heating, Ventilation, and Air Conditioning) duct model 

(section 3.2) are compared to experimental data and classic aeroacoustic simulations (hybrid approach) with 

sources based on unsteady CFD solutions (LES). Finally, the computational performance of the algorithm 

is analyzed in section 4 followed by concluding remarks and possible future investigations (section 5). 

2 Method overview 

The SNGR method consists in generating a random (turbulent) velocity field as a finite sum of discrete 

Fourier modes based on average data of the flow field. In a second step, this turbulent velocity field is used 

to define source terms for acoustic propagation and radiation (either in time domain or frequency domain).  

2.1 Velocity fluctuations 

Let’s start with the steady-state RANS simulation output providing turbulent kinetic energy 𝑘̅ and turbulent 

dissipation 𝜖 fields. In homogeneous turbulent flows, 𝑘̅ is the time average (<⋅>) of the product of the 

velocity fluctuations 𝑢𝑗
′ as described next: 

 
𝑘̅ =

1

2
< 𝑢𝑗

′𝑢𝑗
′ > (1) 

and can also be analyzed in terms of its wavenumber content 𝜅 with the energy spectrum function 𝐸(𝜅) : 

 
𝑘̅ = ∫ 𝐸(𝜅)𝑑𝜅

∞

0

. (2) 

The energy spectrum function is also used to define the turbulent dissipation rate 𝜖 as follows: 

 
𝜖 = 2𝜈 ∫ 𝜅2𝐸(𝜅)𝑑𝜅

∞

0

, (3) 

where 𝜈 denotes the fluid viscosity. 

Once the main flow variables are defined, the turbulent velocity field (fluctuations) can be decomposed in 

terms of Fourier modes [4]. For this, considering a homogeneous isotropic turbulent velocity field, a time 

dependent formulation of the velocity fluctuation takes the form: 

 

𝑢𝑗
′(𝒙, 𝑡) = ∑ 𝑢̃(𝜅𝑚) cos (𝜅𝑙

𝑚 ( 𝒙 − 𝑈̅𝑙

𝑁

𝑚=1

 𝑡) + 𝜓𝑚 +  𝜔𝑚𝑡)𝜎𝑗
𝑚, 

(4) 

where,  

• 𝜅𝑙
𝑚 is the wavenumber vector randomly defined on a sphere of radius 𝜅𝑚 associated with mode m; 

• 𝑈̅𝑙 is the local mean velocity of the flow obtained from the RANS solution; 

• 𝜓𝑚 is the phase of the mode m with a uniform probability distribution; 

• 𝜔𝑚 is the angular velocity of the mode m; 

• 𝜎𝑗
𝑚 is the orientation vector of the mode m. As the turbulent velocity field is supposed to be 

incompressible, the orientation vector 𝜎𝑗
𝑚 can be defined using the continuity equation as follows: 



𝜕𝑢𝑗
′/𝜕𝑥𝑗 = 0 → 𝜎𝑗

𝑚 ⋅ 𝜅𝑙
𝑚 = 0 for 𝑚 = 1, … , 𝑁. The remaining components are set with the use of 

a random angles.  

The angular velocity 𝜔𝑚 can be expressed in terms of the wavenumber 𝜅𝑚  using the Kolmogorov formula:  

 

𝜔𝑚 = √
2𝑘̅

3
𝜅𝑚, 

(5) 

(by default in our implementation), or alternatively, using the Heisenberg formula:  

 

𝜔𝑚 = √
3

2
𝜖

1
3(𝜅𝑚)

2
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(6) 

 

In the current implementation, the convection effects in equation (4) are neglected (𝑈̅𝑙/𝑐0 ~ 0 where 𝑐0 is 

local speed of sound) and the velocity fluctuations are transformed to the wavenumber space using Euler’s 

identity, i.e.  𝑒𝑖 𝑥 = cos(𝑥) + 𝑖 sin (𝑥). Therefore, the velocity fluctuations take the following simplified 

form: 

 

𝑢𝑗
′(𝒙, 𝜅) = ∑ 𝑢̃(𝜅𝑚) exp [𝑖( 𝜅𝑙

𝑚 𝒙 + 𝜓𝑚
𝑙)]

𝑁

𝑚=1

 𝜎𝑗
𝑚. 

(7) 

Besides, the wavenumber space is discretized using a uniform unidimensional grid ranging from 0 to 2𝜅kol 

with a ∆𝜅 spacing, where 𝜅kol is the Kolmogorov wavenumber, i.e. 𝜅kol = (𝜖/𝜈3)1/4. To satisfy the 

homogeneous isotropic turbulence properties of the synthetic flow in equation (1), each mode amplitude 

𝑢̃(𝜅𝑚) should be of the form:  

 

𝑢̃(𝜅𝑚) = √∫ 𝐸(𝜅)𝑑𝜅
𝜅𝑚+

∆𝜅
2

𝜅𝑚−
∆𝜅
2

. 
(8) 

Consequently, the turbulence spectrum 𝐸(𝜅) can take various forms. For instance, some authors agree on 

the semi-empirical von Karman – Pao spectrum [4] to expresses  𝐸(𝜅) as follows: 

 
𝐸(𝜅) = 𝐴

2𝑘̅

3𝑘𝑒

(𝜅 𝜅𝑒⁄ )4

(1 + (𝜅 𝜅𝑒⁄ )2)
17
6

𝑒−2(𝜅 𝜅𝑘𝑜𝑙 ⁄ )2
, (9) 

where the constant 𝐴 and 𝜅𝑒 are computed using relations (2) and (3). To illustrate the behavior of equation 

(9),  Figure 1 plots this relation for a given set of values.  



 

Figure 1: Von Karman Pao spectrum for 𝑘̅ = 136 m²/s²,  𝜖 = 18820 m²/s³, A= 1.47, 𝑘𝑒 = 15.5 m−1  

and 𝑘𝑘𝑜𝑙 = 47000 m−1 in a loglog representation. 

2.2 Acoustic source generation 

In this work, the computation of the acoustic noise sources from the flow fluctuations is based on Lighthill’s 

analogy [6]. This analogy is valid for low Mach number flows as no convection is considered on the acoustic 

operator. Lighthill’s analogy is expressed as follows:  

 𝜕2𝜌

𝜕𝑡2
− 𝑐0

2
𝜕2𝜌

𝜕𝑥𝑗𝜕𝑥𝑗
=

𝜕2 𝑇𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗  
, (10) 

where 𝑇𝑖𝑗 is known as the Lighthill tensor, 𝜌 is the acoustic fluid density and 𝑐0 is the speed of sound. For 

a Stokesian perfect gas like air, in an isentropic, high Reynolds number and low Mach number flow, the 

Lighthill tensor 𝑇𝑖𝑗 is often approximated [7] as  𝑇𝑖𝑗 ∼ 𝜌0𝑢𝑖
′𝑢𝑗

′ where 𝜌0 is the mean fluid density. In 

frequency domain (at angular frequency 𝜔) and with all the previous approximations, Lighthill’s analogy 

results in:  

 
−𝜔2𝜌 − 𝑐0

2
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𝜕2𝑢𝑖
′𝑢𝑗

′

𝜕𝑥𝑖𝜕𝑥𝑗 
. (11) 

Furthermore, Lighthill’s analogy available in Actran is based on a finite element formalism. For this, first a 

change of variable is performed to express equation (11) in terms of the acoustic potential 𝜓, with 𝜌 =
 −𝑖𝜔𝜓/𝑐0

2 :  

 𝜔2

𝑐0
2 𝜓 +
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′𝑢𝑗

′
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. (12) 

Then, multiplying the previous expression by a test function 𝛿𝜓 and integrating by parts in the whole control 

volume Ω the following expression is obtained:  
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(13) 

The surface terms (integrals with sub-index Γ) in the variational formulation are used to impose or define, 

either: (i) acoustic boundary conditions, i.e. acoustic impedance/admittance or acoustically rigid walls 

(natural condition); or (ii) aeroacoustic surface sources, consequence of spatial domain truncations. By 



assuming a sufficiently large domain Ω including all the sources, the surface term in equation (13) vanishes 

leading to a single volume source term of the form (in time or frequency domain respectively):   

 
  𝑆𝑖(𝒙, 𝑡) ∼ 𝜌0

𝜕𝑢𝑖
′𝑢𝑗

′

𝜕𝑥𝑗 
    or    𝑆𝑖(𝒙, 𝜔) ∼ 𝜌0

𝜕𝑢𝑖
′  ⊛ 𝑢𝑗

′

𝜕𝑥𝑗 
 ,  (14) 

where ⊛ is the convolution product.  It is worth noticing that one spatial derivative has been removed from 

the original Lighthill source (i.e. 𝜕2𝑇𝑖𝑗/𝜕𝑥𝑖𝜕𝑥𝑗) using the variational formulation, this is very convenient 

from the numerical point-of-view as second derivatives are difficult to compute from the numerical data. 

Secondly, the source term is a vector (instead of a scalar in the original Lighthill formulation) related to the 

first spatial derivative of the Reynolds’s tensor, i.e. 𝜌0𝑢𝑖
′𝑢𝑗

′, hence a momentum source. A further 

simplification may be applied by using the continuity equation and given the fact that the flow is assumed 

to be incompressible, this results in (in time or frequency domain respectively):   

 
  𝑆𝑖(𝒙, 𝑡) ∼ 𝜌0𝑢𝑗

′ 𝜕𝑢𝑖
′

𝜕𝑥𝑗 
 or  𝑆𝑖(𝒙, 𝜔) ∼ 𝜌0𝑢𝑗

′ ⊛
𝜕𝑢𝑖′

𝜕𝑥𝑗
,  (15) 

or in the wavenumber space, the momentum source related to Lighthill’s analogy can be expressed as:  

 
𝑆𝑖(𝒙, 𝜅) = 𝜌0𝑢𝑗

′(𝜅) ⊛
𝜕𝑢𝑖′(𝜅)

𝜕𝑥𝑗
. (16) 

In practice, the velocity fluctuations and momentum source are computed at the CFD cells’ centers. The 

gradient of equation (7) is taken as follows: 

 𝜕𝑢𝑖′

𝜕𝑥𝑗
= ∑ 𝑢̃(𝜅𝑚)𝑖 𝜅𝑗

𝑚 exp [𝑖( 𝜅𝑙
𝑚 𝑥𝑙 + 𝜓𝑚

𝑙)]

𝑁

𝑚=1

 𝜎𝑗
𝑚, 

(17) 

where the gradient of 𝑢̃(𝜅𝑚) has been neglected as it is expected to have a little variation across the space.  

To keep the SNGR method affordable in computational cost terms, the velocity fluctuations and momentum 

sources are evaluated at the CFD cells’ centers. Consequently, the spatial fluctuations inside the CFD cells, 

particularly important at high wavenumber, are unresolved.  Following an analytical integration of the 

source term inside the CFD cell to take into account the unresolved fluctuations, a multiplicative factor is 

determined to be proportional to (𝜅𝑚)−3 .  

To ensure convergence with respect to the number of turbulent modes 𝑁, the source term is normalized by 

the factor 1/√𝑁 . Besides, since the synthetically generated sources represent a statistically random process, 

multiple realizations constituted by different set of random numbers are necessary to ensure a correct 

solution level. 

Finally, the sources in equation (16) are integrated on the acoustic mesh for each random number sample 

(realization) using equation (13) (r.h.s.- first term). 

3 Application 

3.1 Duct with bifurcation 

As a first simplified application, a pseudo-3D model of a 2D duct with bifurcation is proposed (Figure 2). 

A flow of 50 m/s is imposed at the main inlet (upper-left, red domain in Figure 2) while zero flow is imposed 

at the secondary inlet (lower-left, blue domain in Figure 2) and zero pressure is imposed at the outlet (orange 

domain, Figure 2). Boundary layers are well discretized at all the walls with prismatic cells and sufficient 

mesh refinement is assured downstream at the bifurcation to properly capture the shear layer. The mean 

flow, the turbulent kinetic energy and energy dissipation rate are also plotted in Figure 3, Figure 4 and Figure 

5 (respectively). The flow simulation is performed using Cradle SC/Tetra [8]. 



 

 

Figure 2: Sketch of the RANS inlets and outlets. 

 

Figure 3: Mean velocity from RANS [m/s]. 

 

 

Figure 4: Turbulent kinetic energy [m²/s²]. 

 

Figure 5:  Turbulent dissipation rate [m²/s³]. 

 

The acoustic model covers the same area as the fluid dynamics model. Non-reflecting conditions are 

imposed at the inlet (blue and red domains, Figure 2) and outlet (orange domain, Figure 2) boundaries.  The 

acoustic propagation simulation was performed in the frequency domain using the finite-element solver 

Actran.  

Since the SNGR method relies on a random numbers generation to predict noise of a statistically steady-

state process, multiple realizations or samples are needed in the simulation. Figure 6 shows the convergence 

of the method with the number of samples at one point located in the middle of the duct near the outlet 

boundary. This figure indicates that the acoustic pressure is sufficiently converged for a number of samples 

around 32. 

 

Figure 6: Convergence of the number of realizations at one microphone. 

The number of turbulent modes 𝑁 is a key factor for the precision of the method since it is the truncation 

point of the Fourier series to represent the turbulent velocity fluctuations. Indeed, numerical convergence 

should be achieved as the number of turbulent modes increases. In Figure 7, it is noticed that the acoustic 

pressure is converged even with a low number of modes except at the lowest frequencies. Indeed, the von 



Karman-Pao spectrum presents a sharp peak at low wavenumber and a constant slope decrease at the middle 

range wavenumber (Figure 1). 

 

Figure 7: Convergence of the number of turbulent modes at one microphone. 

The last convergence study is focused on the CFD mesh size. Certainly, the SNGR method should converge 

as the CFD mesh size decreases (or refinement increases). In order to highlight this process, the RANS fields 

were re-interpolated into different meshes with uniform mesh size ranging from 0.016 m to 0.001m. Figure 

8 depicts the acoustic pressure using the various CFD meshes. Results are well superposed except at low 

frequencies where the missing modeling of correlation between cells starts playing a role.  

 

Figure 8: CFD mesh size convergence at one point. 

3.2 HVAC duct model 

The solution for a low Mach number (M<0.1)  panel HVAC duct as detailed in [9] will be considered and 

compared with measurement data and prediction data based on unsteady CFD results available in the 

literature. Ansys Fluent [10] has been used for generating the RANS solution (e.g. velocity and turbulent 

kinetic energy in Figure 9). 

 



 

Figure 9: Velocity and turbulent kinetic energy for HVAC duct model. 

 

The results are compared at three microphone positions as outlined in the acoustic model shown below 

(Figure 10): 

 

 

 

 

Figure 10: Acoustic model with microphone annotations. 

For the SNGR simulations, a relative threshold of 0.1% has been used corresponding to neglecting the CFD 

cells with turbulent kinetic energy level below 0.35 m2/s2. The algorithm for automatically finding the 

necessary number of modes for each cell in order to properly represent the turbulent spectrum has been used 

with the maximum amount of modes being 256. The majority of the cells can be represented with just 16 



modes and the average amount of modes is around 30. The number of random samples (realizations) used 

is 30.  

In the plots of Figure 11, the sound pressure level can be visualized at those three microphones for 

frequencies up to 2000 Hz. The measurements have been averaged over a number of smaller sub-signals in 

order to have smoother curves. The results based on SNGR are averaged across the different realizations. 

 

 

Figure 11: Sound pressure level on microphones 1 (a), 2 (b) and 3 (c). 

For all three microphones, SNGR provide an accurate depiction of the higher frequency range, which is a 

big limitation in classic computational aeroacoustics due to the filtering of the fluctuations by the CFD mesh 

[11]. Also, thanks to the propagation solver, the resonance due to the duct length around 800 Hz can be 

properly represented. However, in the lower frequencies, even though the trend is followed, the source 

amplitudes lead to an underestimation of the sound pressure levels by about 10-20 dB. This discrepancy can 

be explained by the limitation of the von Karman-Pao spectrum law at low wavenumber. Indeed, the largest 

eddies are greatly dependent on the model geometry and boundary conditions, which are not parametrized 

in the analytical expression. Furthermore, correlations between CFD cells might play a role which is not 

(yet) implemented in the current SNGR method. 

4 Computing performance 

Computing performance is deeply dependent on the choice of implementation for the SNGR method. In the 

current implementation, the aeroacoustic sources are directly computed inside the wavenumber space 

requiring a convolution product. An initial implementation was performed by sampling the wavenumber 

with logarithmic spacing in order to better describe the von Karman-Pao shape (i.e. more intervals for low 

wavenumbers) to later compute the convolution product using an in-house implementation (directly at the 

target frequencies). However, it became evident that the gain in precision was largely counterbalanced by 

the complexity of the in-house algorithm and the computational cost of the method. The second 

implementation is simpler, with a linear spacing of the turbulent spectrum and the convolution product is 

calculated via Intel’s MKL [12] package. The new implementation appeared to be one to two orders of 

magnitude faster. 

MPI (Message Passing Interface) parallelism have been introduced in order to distribute the computing load 

among several processors. Since several independent realizations are needed, the parallelism has been 

applied on this direction. At this stage, domain parallelism is under development and it will be possible to 

use it combined load-case (realization) parallelism and domain parallelism.  Multi-threading (using 

OpenMP) is also available and is very efficient since most of the computation is point-wise. 

Besides, in order to reduce the peak memory allocation (mainly due to random number storage), the 

topological source domains can be divided into smaller ones in which iterations are done sequentially. 



Likewise, filtering of the CFD cells below a certain threshold of turbulent kinetic energy level can also be 

applied in order to neglect cells where noise sources are small, like this memory consumption is reduced. 

Furthermore, by giving a threshold error for the computation of the velocity fluctuation, the number of 

turbulent modes can be automatically selected as a local function of the RANS fields. The latter feature 

allows to locally (per CFD cell) represent the turbulent velocity field with the sufficient number of Fourier 

modes needed.   

For the HVAC model presented in section 3.2, the number of CFD cells selected is round 332 000. Each 

load case (realization) runs in 52 seconds using 11 processes for load-case parallelism and 4 threads per 

process. The full simulation time including CFD loading and post-processing reaches 9 minutes and the 

peak memory per process attains 5.6 GB on a 44-core Broadwell Intel Xeon chipset at 2.10 GHz. 

5 Conclusions 

An efficient method for the computation of aeroacoustic sources using the SNGR technique has been 

presented. In contrast to classic hybrid approaches in which the aeroacoustic sources are computed from 

computational expensive CFD simulations (LES), in the SNGR method, the sources are based on turbulent 

velocity fluctuations synthesized from affordable steady-state RANS simulations. The method has been 

described from the theoretical point-of-view and from its implementation in Actran to properly handle 

industrial-size applications. Because of numerous improvements, the current implementation of the method 

is now efficient both for the computational time and the amount of required memory. 

Using a simple duct configuration, the convergence of the method was analyzed with respect to: (i) the 

number of random samples; (ii) the number of turbulent modes; and (ii) the CFD mesh size. Such analyses 

increased the confidence on the method from the numerical perspective. 

A more realistic application focused on a HVAC duct has been presented. For this application, using the 

same numerical recipes learned from the previous case, acoustic results have been obtained and compared 

to experimental data and Actran simulations using sources computed with an unsteady CFD (LES). The 

analysis of the results (section 3.2) indicates a good correlation at middle and high frequencies with loss in 

accuracy at the lowest frequencies. This behavior can be explained by two reasons: (i) low frequency noise 

is mainly produced by large (coherent) flow structures (i.e. eddies) that are not properly resolved by the 

SNGR method, while high frequency noise is predominately produced by small (isotropic) eddies well 

synthesize by the SNGR technique; (ii) as it is depicted in Figure 1, the von Karmann-Pao spectrum is well 

resolved for high wavenumbers (small eddies) while is un-resolved or simply unknow a low wavenumbers. 

Future developments of the method and implementations will be focused on domain parallelism, and on the 

improvement of prediction for low frequencies using for example extra-cell correlations (using e.g. random 

numbers with spatial correlation) or user-defined turbulence spectrums. 
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